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Abstract: The synthesis of nanoporous copper oxide (NP-CuO) materials via the dealloying and
thermal oxidation of amorphous CuZrAl ribbons, representing the novelty of this research and
previously achieved via a melt-spinning process, was carried out in an aqueous hydrofluoric acid
(HF) solution by varying the holding time. These nanoporous copper (NPC) structures were used as
a template to achieve a 3D-NP-CuO materials with different surface morphologies. To investigate the
structural and morphological properties of the obtained sandwich-type materials, X-ray diffraction
(XRD), scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM/EDX),
and ultraviolet–visible spectroscopy (UV-VIS) techniques were used. In summary, the dealloying and
thermal oxidation of amorphous ribbons is an interesting approach to achieving a three-dimensional
(3D) network of NP-CuO with different morphologies and with a low production cost. These
sandwich-type structures, consisting of NPC and copper oxide nanowires (CuO/Cu2O), combine
the good electrical properties of NPC with the catalytic properties of copper oxide semiconductors,
making them suitable materials for photocatalysis, photoelectrodes in solar cells, battery applications,
and electrochemical sensors.

Keywords: amorphous ribbons; dealloying; thermal oxidation; nanoporous copper oxide; nanowires

1. Introduction

Metal oxide semiconductors are very attractive materials for several industries, par-
ticularly for the energy conversion sector, sensor industry, and environment remediation
industry [1–3]. Copper has two oxidation state oxides, cupric oxide (CuO) and cuprous
oxide (Cu2O), which both have semiconductor properties with band gaps of 1.2 and 2.0 eV,
respectively. Their energy band gaps make them good candidates for solar cells, water-
splitting devices, and sensor devices [1,4]. Nanoporous materials are an important class of
functional material that can improve material properties because of their large surface area
and surface-to-weight ratio [5]. The dealloying process is one of the routes to producing
nanoporous and microporous materials via the selective dissolution of less noble elements
in acidic or basic solution [6,7]. Amorphous ribbons have a homogeneous composition
and, compared to crystalline alloys, do not have grain boundaries or defects, making
them an ideal candidate for the dealloying process [8]. Through the dealloying process
using amorphous materials, nanoporous gold (NPG) [9], nanoporous silver (NPS) [10],
nanoporous platinum (NPP) [11], nanoporous nickel (NPN) [12], and nanoporous copper
(NPC) [13] were synthesized, as well as other nanoporous composite materials (metal–metal
or metal-oxide) [14,15].
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The synthesis of NPCs via dealloying has been studied by groups of researchers around
the world in bulk or ribbon form, from various amorphous alloy systems. Dan et al. [14],
produce an NPC structure from TixCu100x amorphous binary alloys (x = 40, 50 and 60%) in
hydrofluoric acid solution under free corrosion conditions. The tapes that were dealloyed
in HF solution with a concentration of 0.03 M showed a bicontinuous nanoporous structure
with a pore size of 25 to 75 nm and a ligament size of 46 to 79 nm. The dealloyed ribbons in
0.13 M HF solution had a pore size of 85–380 nm and a ligament size of 80–338 nm [8].

Li et al. [15] presented a relatively simple two-step synthesis method (dealloying–
electrochemical oxidation) to produce Cu2O/CuO nanoporous oxide heterostructures
using massive amorphous metal rods (BMG). The NPC was manufactured by chemically
dealloying the bulk alloy rod Cu50Zr45Al5 (BMG) in 0.05 M HF at 298 K for 1 day. The
growth of CuO and Cu2O heterostructures was carried out electrochemically at a tem-
perature of 298 K in 0.5 M KOH and at a constant current density of 5 mA cm−2 for
10–30 min [15].

Thermal oxidation is one of the simplest processes for producing a wide range of
micro- and nano-oxide structures, such as nanowires, nanoflakes, and nanoneedles, on a
metal surface [16–18]. This process involves heating metal substrates, such as foil, plates,
and wires, in the presence of air. Amorphous ribbons from CuZr systems have been widely
used as dealloying alloys and as nanostructured oxides for various applications. Their Zr
and Al standard equilibrium potentials are larger than those for Cu [4,19]. The difference
in the standard electrode potentials between these elements means that the Cu–Zr-Al
amorphous alloy meets the requirements for dealloying.

In the present work, an NPC substrate produced via the free dealloying process of
CuZrAl ribbons was used as a template to obtain nanoporous copper oxide via the thermal
oxidation process. The influence of holding time at a temperature of 500 ◦C on the surface
morphology was also discussed.

2. Materials and Methods
2.1. Preparation of Amorphous Ribbons

To produce an amorphizable alloy with the nominal composition of Cu48Zr47Al5, the
arc melting process was used with a mixture of pure Cu (99.99 wt%), pure Zr (99.9 wt%),
and Al (99.9 wt%) in an Ar atmosphere. A CuZrAl amorphous ribbon was prepared using
the melt-spinning method. As-produced ribbons had a thickness of 20 µm and a width of
2 mm. The dealloying process was carried out in a 0.5 M HF solution, purchased from the
Sigma-Aldrich Company (St. Louis, MO, USA), under free immersion at room temperature
for a reaction time of 2 h. After corrosion, the ribbons were washed with distilled water to
remove any residual HF solution.

2.2. Thermal Oxidation Process

Thermal oxidation of the prepared nanoporous ribbons was carried out at 500 ◦C for
6, 12, and 24 h in air atmosphere. The heating rate (10 ◦C/min) was maintained until the
oxidation temperatures were reached.

2.3. D-NP-CuO Material Characterization

To study the structure of the Cu-Zr-Al ribbons before and after dealloying, and also
after thermal oxidation, X-ray diffraction (XRD) patterns were collected using a PANalyti-
cal X’Pert PRO MPD diffractometer with Cu-Kα radiation (λ = 1.5418 Å), in the range of
2θ = 10–80◦, from Almelo, the Netherlands. The surface morphology of the samples ob-
tained before and after thermal oxidation was examined via scanning electron microscopy
(SEM) using an Inspect S + EDAX GENESIS XM 2i microscope from the FEI Company
from Eindhoven, the Netherlands. Energy-dispersive X-ray spectroscopy was conducted
for elemental identification of the samples using an EDX Ametek Element Module from
Eindhoven, the Netherlands. The optical properties of the material were recorded using
a UV-Vis analysis PerkinElmer Lambda 950 UV/Vis spectrophotometer, in the range of



Eng. Proc. 2023, 48, 56 3 of 7

350–800 nm, from Connecticut, USA. The band gap Eg of the materials was determined by
plotting the Kubelka–Munk function against energy (eV).

3. Results and Discussion

The XRD patterns of the amorphous and dealloyed ribbons are illustrated in Figure 1a.
A broad intensity peak appears in the XRD diffraction patterns of the amorphous ribbons at
an angle of 2θ in the range of 35–45◦, which reflects the amorphous state of the CuZrAl alloy.
After the dealloying process, the most electrochemically active elements (Zr and Al) were
selectively removed. The nonporous metal is mainly composed of face-centered cubic (fcc)
Cu (JCPDS card No. 00-004-0836) and some cubic Cu2O (JCPDS card No. 01-078-2076). The
Cu2O nanoparticle was obtained on the NPC substrate, probably because the dealloying
method was carried out in an oxygen-rich corrosive solution, resulting in some of the copper
atoms of the NPC reacting with the dissolved oxygen, resulting in Cu2O nanoparticles [20].
Figure 1b shows the XRD patterns of the as-synthesized 3D-NP-CuO material, after thermal
oxidation. Due to the high surface area of the NPC ribbons after thermal oxidation, copper
atoms react with the oxygen in the atmosphere and the sample becomes primarily composed
of monoclinic CuO (JCPDS card No. 00-005-0661) for all thermal oxidation parameters.
Based on XRD results and according to the literature data, it can be concluded that the
formation process of the produced CuO nanoparticles and nanowires includes two reaction
steps [21]:

4Cu + O2 → Cu2O; (1)

2Cu2O + O2 → CuO; (2)
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is not clearly highlighted in the SEM image (Figure 2a), possibly due to the nanosize of 

Figure 1. XRD pattern of copper base amorphous ribbons for (a) amorphous and nanoporous cooper
and (b) 3D-NP-CuO material.

Figure 2 shows the surface morphology of the as-dealloyed CuZrAl amorphous
ribbons in a 0.5 M HF solution at room temperature during a 2 h holding time. The pore
size was measured from SEM images using ImageJ software (Version 1.53t) and defined
as the distance between the ligaments/particles. The dealloyed Cu48Zr47Al5 amorphous
ribbon presents a 3D bicontinuous nonporous structure with an average ligament length
of 26.75 nm. This structure resulted from the rearrangement of the copper atom after
zirconium and aluminum were removed. The Cu2O structure shown in the XRD pattern
(Figure 1a) is not clearly highlighted in the SEM image (Figure 2a), possibly due to the
nanosize of the Cu2O particles. In Figure 2b–d, samples with different surface morphologies
synthesized through the thermal oxidation process are presented.
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Figure 2. SEM morphologies of the NPC and NP-CuO samples for (a) NPC; (b) NP-CuO obtained at
500 ◦C with a holding time of 6 h; (c) NP-CuO obtained at 500 ◦C with a holding time of 12 h; and
(d) NP-CuO obtained at 500 ◦C with a holding time of 24 h.

Figure 2b shows SEM images of the thermal oxidation sample at 500 ◦C with a holding
time of 6 h. It can be seen that the synthesized monoclinic CuO material presents a homoge-
neous distributed 3D interconnected sphere, which is composed of many nanorods. The 3D
copper oxide nanoparticles show a nanopore structure mimicking the NPC template [22].
From the inset of Figure 2b, it can be seen that larger spheres are formed on a 3D substrate
compound from smaller interconnected nanorods and much smaller nanospheres. The
average length of the surface sphere is 1.63 µm, and the average distance between them is
about 505 nm. The distance between the 3D substrates is about 152 nm. Figure 2c presents
an SEM image of the sample obtained at a 12 h holding time. The 3D interconnected spheres
of the CuO material have an increase in surface oxidation and porosity, and the larger
spheres are, on average, 160 µm and the average distance between particles is 936 nm. In
Figure 2d, due to the increase in the holding time to 24 h on the surface of the 3D CuO
material, the in-situ growth of CuO nanowires continues, with an average length of 196 nm.
The nanowires are randomly distributed on the 3D CuO surface, further increasing the
surface-to-volume ratio.

The typical EDX spectra shown in Figure 3 confirm the complete dealloying of Zr
and Al atoms from the amorphous ribbons. The effect of the diffusion of oxygen from the
dealloying process and the natural oxidation of the nanoporous ribbons on the oxygen
element is presented in Figure 3a. Figure 3b–d present an increase in oxygen content after
thermal oxidation and the presence of a single metal element (Cu). A site increase in the O
atom is shown in Figure 3d, due to the oxide nanowire on the NP-CuO surface.
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The UV-vis absorption spectra of the synthesized NP-CuO are shown in Figure 4a.
The absorption spectra are present a very high absorption in both the visible region and
the UV region, which is probably due to the nanoporous oxide structure [23]. The optical
band gaps of the NP-CuO materials were determined using the Tauc plot method, using
Equation (3) [24]:

αhm = A(hv − Eg)n (3)

where α is the absorption coefficient, hv is the photon energy, A is a proportionality constant,
and Eg is the optical band gap.
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temperatures.

p-type CuO semiconductors have reported optical band gaps between 1.3 and 2.1 eV [25].
In our study, for the NP-CuO samples, a high band gap at 3.68 eV was reported for the surface
nanowire sample. For the sample oxidized for 6 and 12 h, band gaps at 3.58 and 3.30 eV,
respectively, were presented. A slight increase in the band for the material synthesized for 24 h
was due to the unidimensional structure on the NP-CuO surface. A blue shift was indicated
from our results, generated by the reduced particle size. This blue shift has been reported in
the literature for CuO quantum dots, because of quantum confinement effects [26,27].

4. Conclusions

In summary, the dealloying and thermal oxidation of amorphous ribbons is an inter-
esting approach to achieving 3D networks of NP-CuO with different morphologies and
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with a low production cost. The absorption spectra of NP-CuO samples show a wide ab-
sorption band in the 350–800 nm region and a high surface-to-volume ratio, which can lead
to enhanced photocatalytic activity for environmental remediation. Because of the wide
absorption spectra, NP-CuO might be used as an ideal harvester for solar irradiation. At
an increased holding time of 24 h, on the surface of NP-CuO, successfully unidimensional
nanowires were synthesized. For the first time, in this work, a high-energy band gap value
in the range of 3.30 eV to 3.68 eV was reported for CuO nanoparticles obtained via the
dealloying and thermal oxidation of amorphous ribbons.
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