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Abstract: In this work, we describe the fabrication of paper-based aptasensing devices for ampicillin
determination that rely on the salt-induced aggregation of gold nanoparticles (AuNPs) in the presence
of the target. Circular paper-based devices were created on paper via pen-plotting (using water-
repellent ink to create hydrophobic barriers) and modified with NaCl. The sample was incubated
with an ampicillin aptamer and AuNPs and was added to the assay zones of the paper-based devices.
In the absence of ampicillin, the aptamer prevented the aggregation of the AuNPs, and the assay
zones remained red. When ampicillin was present, it selectively bound with the aptamer and the
AuNP aggregate, producing a purple color. The color of the assay zones was monitored via a
smartphone, and the color graduation was related to the ampicillin concentration in the sample.
Different experimental parameters (type of paper, concentration of reagents) were investigated, and
the analytical features of the method for the determination of ampicillin were established.

Keywords: paper-based devices; ampicillin; gold nanoparticles; smartphone; colorimetric detection;
pen-plotting

1. Introduction

Antibiotics are being widely used for the prevention and treatment of bacterial infec-
tions in farming [1]. The extensive use, abuse or misuse of antibiotics in food-producing
animals may lead to residues finding their way into animal-derived foods (such as meat,
milk and dairy products) and the natural environment. As a result of this process, long-
term exposure to antibiotic residues can increase antibiotic resistance and potentially cause
health problems to human consumers [2–4].

Therefore, it is important to develop low-cost, simple, fast, selective and sensitive de-
tection technologies for the determination of antibiotics in different matrices. The “golden
standard” for the identification and determination of antibiotics are liquid chromatography
approaches, often hyphenated to mass spectrometry (LC-MS), which offer unambiguous
confirmation, high sensitivity and multi-analyte capabilities [5,6]. However, these method-
ologies require expensive and bulky equipment, well-trained staff and extensive sample
pretreatment. On the other hand, immunoassays (based on the use of antibodies for target
recognition) [7] and biosensors [8,9] offer distinct advantages over LC-MS in terms of
portability, rapidity, cost and, more importantly, scope for on-site and field assays.

Aptamers are gaining increasing popularity for antibiotic detection, serving as biore-
ceptors in biosensors and bioassays [10–13]. Aptamers, also named “artificial enzymes”,
are short oligonucleotide sequences that exhibit binding affinity towards selected target
analytes and have some distinct important advantages over antibodies. Paper-based ana-
lytical devices (PADs) have attracted increased attention in the last fifteen years, as they are
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inexpensive, portable sensing platforms for different analytical applications, using cellulose
paper as a functional support [14–19].

In this work, we describe a new type of paper-based aptasensing devices for ampicillin
determination that rely on the salt-induced aggregation of gold nanoparticles (AuNPs)
in the presence of the target [20]. To the best of our knowledge, this is the first report
of a simple paper-based device for ampicillin detection. Although lateral flow assays
on functional nitrocellulose strips have been reported for ampicillin detection [21], these
devices are complex to fabricate and require modified capture probes. The principle of the
assay proposed in this work is illustrated in Figure 1. Initially, paper-based devices are
patterned on paper via pen-plotting using hydrophobic ink and modified with NaCl. The
sample is incubated with an ampicillin aptamer and AuNPs and added to the paper-based
device. In the absence of ampicillin, the aptamer prevents the aggregation of the AuNPs,
and the devices are colored red. When ampicillin is present, it selectively binds with the
aptamer and the unprotected AuNP aggregate, producing a purple color. The color of the
paper-based devices is monitored via a smartphone, and the color graduation is related to
the ampicillin concentration in the sample.
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Figure 1. The principle of the paper-based colorimetric aptamer assay for ampicillin with salt-induced
aggregation of AuNPs.

2. Experimental
2.1. Reagents and Materials

All chemicals used for the preparation of stock and standard solutions were of an-
alytical reagent grade and purchased from Sigma-Aldrich. The ampicillin aptamer was
purchased from Integrated DNA Technology (IDT) (USA), and its sequence was 5′-TGG
GGG TTG AGG CTA AGC CGA C-3′.

2.2. Experimental Protocol

The experimental protocol is schematically illustrated in Figure 2.
The paper-based devices were plotted using an AxiDraw desktop x-y plotter (Evil Mad

Science LLC, Sunnyvale, CA, USA). The control software was the AxiDraw extension for
Inkscape operated via the open-access software Inkscape (Inkscape Project, https://inkscape.
org/about/, accessed on 24 October 2023). The paper support was Whatman grade 42 filter
paper, and a hydrophobic marker pen (Edding 780 0.8 mm tip thickness (black)) was used
for plotting.

The paper based-devices were modified with salt by adding 8 µL of a 1.0 M NaCl
solution, and the devices were left to dry.

A 13.3 mM AuNPs solution was incubated with 5 µM of aptamer solution for 1 h.
Then, an ampicillin standard in the range 50–750 µg L−1 was added to the aptamer/AuNPs
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solution and further incubated for 30 min. Finally, 8 µL of the aptamer/AuNPs/ampicillin
solution was added to the salt-modified paper substrate and left to dry at room temperature.

Upon drying, the image of the paper-based devices was captured using a smartphone
(Samsung A12), and the image file was transferred to InkScape. The scanned image was
filtered using the fluorescent preset filter, making the red color more vibrant. The “color
picker” tool was implemented to measure the H-value, using the HSV (hue, saturation,
value) color space. The H-value for each measurement was subtracted from the H-value of
the blank experiment; higher blank-subtracted H-values corresponded to stronger “purple”
color intensity. Data plotting and reporting were performed in Excel.
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Figure 2. The experimental protocol for the fabrication of the PADs, the bioassay and data capture,
analysis and evaluation.

3. Results and Discussion

The method optimization involved study of the type of the paper support, the NaCl
concentration used to modify the devices and the aptamer concentration. Four types of
paper support were studied (namely Mackerey Nagel MN261 chromatography paper,
Whatman grade 1 chromatography paper, Whatman grade 42 filter paper and Whatman
grade 1 filter paper) in terms of the aggregation capacity of AuNPs in the presence of NaCl
(expressed in terms of the H-value). As illustrated in Figure 3a, the strongest aggregation
was obtained with the Whatman grade 42 filter paper, which was used for further experi-
ments. Next, the NaCl concentration that induced the most efficient aggregation of AuNPs
was investigated. As shown in Figure 3b, NaCl concentrations ≥ 1 M were sufficient to
induce the maximum aggregation of AuNPs, and 1 M NaCl was selected. Finally, the
aptamer concentration that was required to protect the AuNPs from the salt-induced ag-
gregation was selected. Figure 3c indicates that the protection of AuNPs from aggregation
increased as the aptamer concentration increased (reflected in the decreasing H-values);
5 µM of aptamer was selected for the rest of this work.

Then, the analytical features of the assay were evaluated. Calibration for ampicillin
was carried out in the concentration range 0–1000 µg L−1. The calibration plot is shown
in Figure 4, while photographs of the respective paper-based devices with different target
concentrations and the linear-log calibration plot are shown as inserts. Each calibration
point is the mean of three assays, and the error bars in Figure 4 represent the standard
deviation of the three assays. The limit of detection was calculated as 10 µg L−1 using
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the formula LOD = 3.3 × sb/S (where sb is the standard deviation of the intercept of the
calibration plot, and S is the slope of the linear part of the calibration plot). The mean
relative standard deviation across the calibration range (including six calibration points)
was 16.9%.
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Figure 3. Selection of (a) the type of paper (8 µL of 13.3 mM AuNPs + 8 µL of 1 M NaCl), (b) the
concentration of NaCl (8 µL of 13.3 mM AuNPs + 8 µL of NaCl at Whatman grade 42 filter paper) and
(c) the concentration of aptamer (different concentrations of aptamer diluted in 10 mM of phosphate
buffer (pH 7.4) containing 2 mM of MgCl2 was incubated with 13.3 mM AuNPs for 1 h and applied
to the paper-based device modified with 1 M NaCl).
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4. Conclusions and Prospects

In this work, a colorimetric paper-based aptasensing approach for the assay of ampi-
cillin was developed. The method for the fabrication of the paper-based devices (pen-
plotting with hydrophobic ink) is fast, low-cost and convenient, and the protocol of
the aptamer-based assay is simple, without the requirement for labels or other probes.
Instrument-free quantitative analysis can be performed using only a smartphone as a
recording device. Work is in progress to improve the limit of detection and implement the
assay using real samples.
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