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Abstract: The potential of hyperspectral UV–VIS–NIR reflectance for the in-field, non-destructive
discrimination of bacterial canker on kiwi leaves caused by Pseudomonas syringae pv. actinidiae (Psa)
was analyzed. Spectral data (325–1075 nm) of twenty kiwi plants were obtained in vivo and in situ
with a handheld spectroradiometer in two commercial kiwi orchards in northern Portugal over
15 weeks, resulting in 504 spectral measurements. The suitability of different vegetation indexes (VIs)
and applied predictive models (based on supervised machine learning algorithms) for classifying
non-symptomatic and symptomatic kiwi leaves was evaluated. Eight distinct types of VIs were
identified as relevant for disease diagnosis, highlighting the relevance of the Green, Red, Red-Edge,
and NIR spectral features. The class prediction was achieved with good model metrics, achieving an
accuracy of 0.71, kappa of 0.42, sensitivity of 0.67, specificity of 0.75, and F1 of 0.67. Thus, the present
findings demonstrated the potential of hyperspectral UV–VIS–NIR reflectance for the non-destructive
discrimination of bacterial canker on kiwi leaves.

Keywords: kiwi; bacterial canker; pseudomonas syringae; plant pathology; optical sensing; in-field
diagnosis; vegetation index

1. Introduction

The Bacterial Canker of Kiwi (BCK) disease, caused by Pseudomonas syringae pv. actini-
diae (Psa), is accountable for numerous epidemics in kiwi orchards annually [1,2]. Scouting-
and laboratory-based techniques (e.g., Polymerase Chain Reaction—PCR—and Enzyme-
linked Immunosorbent assay—ELISA) are currently applied as diagnostic procedures.
While insightful, these methods are hindered by their labor intensiveness, time require-
ments, complex sampling, and unsuitability for rapid real-time field decisions, thus limiting
their use in disease monitoring and field mapping [3,4].

Early diagnosis, especially before symptoms’ visible appearance, is of paramount
importance in plant disease diagnosis. This proactive approach allows for timely and
targeted interventions, reducing the spread of the disease and minimizing crop damage. It
also enables more efficient resource allocation and cost-effective management strategies,
safeguarding agricultural productivity and food security.

Recently, Hyperspectral Spectroscopy (HS) techniques have alternatively been ap-
plied as an innovative indirect plant disease diagnostic tool capable of retrieving relevant
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information about the host–pathogen interactions related to the host’s biochemical and
biophysical modifications. Briefly, changes promoted by pathogens related to plants’ pig-
ment concentrations and physiological processes (e.g., photosynthesis) produce changes
in the quantitative and qualitative patterns of plants’ spectral behavior, namely in the
visible region of the electromagnetic spectrum (VIS, 400–700 nm). In turn, modifications
in leaf water levels, chemical composition (i.e., lignin and protein content), structure,
and internal scattering processes impact the spectral signatures in infrared wavelengths
(IR, 800–2500 nm) [5,6]. Hence, HS could be successfully applied for the detection of
pests [7,8], fungi [9,10], bacteria [11], and viruses [12] affecting different crops, even at
non-symptomatic stages [13].

Nevertheless, data collected from HS frequently present redundant information from
proximal bands. Hence, only a few spectral wavelengths might help to assess plant dis-
ease [14,15]. Approaches including statistical signal processing, mathematical combinations
of different bands, and applied predictive models may be computed to extract meaningful
information, reduce data dimensionality, and/or select relevant features [16,17]. Vegetation
Indices (VIs) exemplify these techniques, as they are numerical measures derived from
parametric formulations of the different spectral bands or wavelengths associated with
essential plant biophysical parameters like photosynthetic pigments, structural molecules,
and water content. These indices are widely employed because of their simplicity and
comprehensiveness, users’ limited knowledge requirements, fast processing, and com-
putational inexpensiveness [18]. VIs formalizations can be combinations of two bands
(most frequent case), three bands, and four or more bands (combination of two VIs) [18].
Among the most frequently computed VIs are the Normalized Difference Vegetation Index
(NDVI) [19,20] and the Enhanced Vegetation Index (EVI) [21,22], which are effective at
assessing parameters related to the plant’s status and structure. VIs developed specifi-
cally for parameter estimation (e.g., leaf’s photosynthetic pigment and water levels) are
frequently employed. Some examples include the Anthocyanin reflectance index (ARI) [23],
Browing Reflectance Index (BRI) [24], Chlorophyll Green (Chlgreen) [25], and Coloration
Index (CI) [26], among others. Furthermore, Vegetation Indices (VIs) can undergo band
optimization procedures, enhancing their spectral sensitivity to the target parameters and
enabling a more comprehensive analysis of the variable under consideration [27].

The present research aims to compare the suitability of VIs and classification modeling
for discriminating non-symptomatic and BCK symptomatic kiwi leaves in-field, using
ground-level UV–VIS hyperspectral reflectance assessments.

2. Methods
2.1. Experimental Site

Two commercial orchards cultivated with kiwi plants (Actinidia deliciosa) were moni-
tored in 2020, both located in Guimarães, Portugal: one situated in Caldas das Taipas (CT;
41◦29′09.8′′ N 8◦21′54.3′′ W) and the other in Briteiros (BT; 41◦30′53.3′′ N 8◦19′20.5′′ W).
Twelve feminine kiwi plants of the variety Bo.Erika® in CT and eight in BT were chosen,
identified with tape and classified according to the absence or presence of typical BCK
visual symptoms (i.e., minor greasy dark lesions which turn from brown to black over time,
and are usually randomly spread on leaves’ surface). Visual phenotyping was performed
on both the adaxial and abaxial sides of the leaves.

2.2. Ground-Based Hyperspectral Reflectance Acquisition

A portable spectroradiometer (ASD FieldSpec® HandHeld 2, ASD Instruments, Boul-
der, CO, USA) was used for leaf spectra capturing between May and August 2020 (9 visits),
ending when the full development of Psa symptoms was reported in the plants’ growing
season. More details of the spectra measurement procedure can be found in [28].

A total of 504 spectral averaged signatures were collected at both test sites, and the
dataset was balanced regarding class distribution (Table 1).
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Table 1. Number of test sites, visits, plants, and leaves assessed per location of experimental sites [28].

Experimental Site Sites Visits Plants Non-Symptomatic
Leaves

Symptomatic
Leaves

Total
Measurements

Briteiros (BT) 1 9 8 89 127 216
Caldas das Taipas (CT) 1 8 12 192 96 288

Total 2 17 20 281 223 504

2.3. Data Modeling

Spectral pre-processing was performed via the computation of a multiplicative scatter
correction (MSC) [29]. A total of 751 wavelength predictors were considered (325–1075 nm).
Due to the overlapping nature of hyperspectral data and multi-scale interference, auto-
correlated signals may arise across various scales [30]. Thus, techniques capable of iden-
tifying the most relevant wavelengths or bands for discrimination and not considering
redundant information are essential.

In this regard, the reflectance data were processed into 32 spectral VIs, resulting in
41 distinct band combinations (Table A1). To calculate them, the wavelengths considered
were: (i) the ones enumerated in their original formula (as indicated in Table A1) or
(ii) default values chosen by the authors, namely 450 nm (representing the Blue region of
the electromagnetic spectrum), 550 nm (Green), 680 nm (Red), 700 nm (Red Edge), and
800 nm (NIR).

Applied predictive modeling was then performed using a model with a built-in Feature
Selection (FS) method called Flexible Discriminant Analysis (FDA). Leaf symptomatology
was used as a binary variable in the models tested, taking the values of ‘No’ (asymptomatic)
and ‘Yes’ (symptomatic). The dataset was split into training (70% of random observations)
and validation data (the remaining 30% of the observations), following a holdout method.
A resampling approach was performed, followed by a repeated cross-validation strategy
using repeated 10-fold cross-validation to estimate the model evaluation criteria. The
confusion matrix (CM), accuracy score, kappa coefficient, and F1-score were considered to
determine the model’s performance. A detailed description of these metrics applied and
the R packages used can be found in [28].

3. Results

The model results showed the capacity of classifying the kiwi leaf measurements
into ‘Non-symptomatic’ and ‘Symptomatic’ with a 0.71 accuracy (proportion of correctly
classified instances), 0.42 Cohen’s kappa (agreement between predicted and actual classes
beyond random occurrence), 0.67 sensitivity (ability to identify diseased measurements),
0.75 specificity (ability to identify healthy assessments), and 0.67 F1 score (harmonized
measure of precision and recall) for the test set (Table 2). The confusion matrix (CM) results
(Table 3) demonstrated that 63 samples were correctly classified as non-symptomatic (True
Negatives), and 44 as symptomatic (True Positives). Nevertheless, 21 measurements were
wrongly classified as symptomatic (False Positives), and 22 as non-symptomatic (False
Negatives). Thus, the model performed better at predicting non-symptomatic assessments
than symptomatic measurements. These findings indicate a reasonably effective model
performance, with an overall ability to distinguish between classes and make accurate
predictions.

Table 2. Classification results of the Flexible Discriminant Analysis (FDA) model computed for
the train and test datasets. Legend: Acc.—Accuracy, Kap.—Kappa coefficient, Sen.—Sensitivity,
Spe.—Specificity, Pre.—Precision, Rec.—Recall, and F1—F1 score.

Modeling Approach Acc. Kap. Sen. Spe. Pre. Rec. F1

FDA
Train 0.76 0.48 0.68 0.80 0.73 0.68 0.70
Test 0.71 0.42 0.67 0.75 0.68 0.67 0.67
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Table 3. Vegetation Index (VI) importance for class discrimination and Confusion Matrix (CM) results
according to Flexible Discriminant Analysis. Legend: Pred—Predicted, ‘No’—Non-symptomatic, and
‘Yes’—Symptomatic.

VI Wavelength (nm) Importance (a.u.) CM Train

Chlgreen 553, 800 100 Pred ‘No’ ‘Yes’
mSR 705, 750 67.15 ‘No’ 157 50

CI 450, 700 52.94 ‘Yes’ 40 107
GI 554, 677 44.45

BRI 450, 690 40.55 CM Test

AVI 400, 994 33.71 Pred ‘No’ ‘Yes’
PVIhyp 800, 1000 24.46 ‘No’ 63 22

Chlgreen 530, 730 19.65 ‘Yes’ 21 44
Rre 670, 780 16.46

Chlgreen—Chlorophyll Green, mSR—Modified Simple Ratio, CI—Coloration Index, GI—Simple Ratio Greenness
Index, BRI—Browning Reflectance Index, AVI—Ashburn Vegetation Index, PVIhyp—Hyperspectral perpendicular
VI, and Rre—Reflectance at the inflexion point.

The built-in Feature Selection tool highlighted eight distinct VIs for sample discrimina-
tion, namely the Chlorophyll Green (Chlgreen), modified Simple Ratio (mSR), Coloration
Index (CI), Simple Ratio Greenness Index (GI), Browning Reflectance Index (BRI), Ashburn
Vegetation Index (AVI), Hyperspectral perpendicular VI (PVIhyp), and Reflectance at the
inflexion point (Rre). These VIs are mostly based in the NIR, Red, and Green regions of the
electromagnetic spectrum (Table 2).

4. Discussion

Eight distinct VIs (nine wavelength combinations) were identified as highly relevant
for disease discrimination. They mostly considered the NIR, Green, and Red spectral re-
gions. These findings present biological significance since they are coherent with the impact
of Pseudomonas syringae pv. actinidiae (Psa) in kiwi leaves. Briefly, these pathogens cause
modifications in pigment concentration and physiological processes (e.g., photosynthesis),
resulting in changes in plants’ spectral behavior in the VIS wavelengths (Blue, Green, and
Red). Furthermore, they cause changes in leaf water levels, chemical composition (namely
lignin and protein content), structure, and internal scattering processes, which impact
the NIR features [5,6]. Similar spectral regions were also identified as relevant for late
blight, target, and bacterial spots detection in tomato leaves [31], and for the assessment
of Cercospora leaf spot, sugar beet rust, and powdery mildew in sugar beet plants [32].
The model evaluation metrics also supported the model’s ability in discriminating non-
symptomatic from symptomatic samples. The model’s performance may be enhanced by
further fine-tuning, particularly in addressing the model’s sensitivity and minimizing the
occurrence of false negatives.

Hyperspectral data may have redundant information in adjacent bands, and only a
few wavelength features might be interesting in classifying a diseased plant [15]. For this
reason, in crop remote sensing (ground-, aerial-, and satellite-based solutions), spectral
VIs are still the most common approaches studied for identifying and managing biotic
stresses in different crops [33]. Despite its substantial inherent potential, the discernment
of the responsiveness of this extensive array of VIs to the target variable remains occasion-
ally ambiguous. Furthermore, concerns related to the susceptibility to disturbances from
confounding elements can arise, mostly encompassing fluctuations in leaf or canopy prop-
erties, background soil reflectance, solar illumination, and atmospheric composition. Such a
confluence of factors can generate instabilities in the spectral attributes of surfaces [34]. Fur-
thermore, VIs were developed when the first applications of broadband sensors occurred,
when only a small set of spectral bands were available and the computational power was
limited. With the development of narrowband devices (i.e., with a few hundred spectrally
narrow bands), these VIs may use the available information within the spectral observation
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range inefficiently, often relying on only a partial spectral subset. Algorithms for extracting
optimized band information were thus created, utilizing well-established index formu-
lations such as simple ratios and normalized differences. These algorithms involved the
correlation of all the potential band combinations to generate 2D correlation matrices, allow-
ing for the visual identification of the most effective band combinations. Nevertheless, this
approach can optimize indices which are strongly case-specific, successfully optimized for
local applications but not to generic cases [18]. FS non-parametric methods, which evaluate
all the spectral wavelengths provided by hyperspectral sensors, constitute an interesting
option for disease assessment, providing more robust and customized information for
modeling data class characteristics and a greater model performance [28,35]. Thus, future
research is needed to better explore the different information extraction (e.g., modeling)
approaches suitable for comprehending plant–pathogen interactions and their effects on
host spectral behavior.

5. Conclusions

The present work aimed to apply hyperspectral reflectance in-field measurements for
the diagnosis of bacterial canker of kiwi (BCK) disease, which is caused by the bacteria
Pseudomonas syringae pv. actinidiae (Psa). Different vegetation indices were computed and
later used to classify symptomless and symptomatic kiwi leaves’ signatures. Chlgreen,
mSR, CI, GI, BRI, AVI, PVIhyp, and Rre were signed as the most relevant for disease dis-
crimination, highlighting the Green, Red, Red Edge, and NIR regions of the electromagnetic
spectrum. These findings are in line with the metabolic and structural changes promoted by
the pathogen in the host tissues. Classification modeling allowed for disease discrimination
with fair model metrics, showing the suitability of this approach for disease assessment.
Nevertheless, further research exploring different Feature Selection methods considering a
broader range of wavelengths is advised.
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Appendix A

Table A1. Spectral Vegetation Indices (VIs) computed in this study.

Vegetation Indices Formula Ref.

Ashburn Vegetation Index (AVI) 2.0 × NIR − RED [36,37]
Anthocyanin reflectance index (ARI) 1

GREEN −
1

RED [23]
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Table A1. Cont.

Vegetation Indices Formula Ref.

Blue Green Pigment Index (BGI) BLUE
GREEN -

Browning Reflectance Index (BRI)
1

GREEN−
1

RED
NIR [24]

Chlorophyll Green (Chlgreen)
(

NIR
GREEN

)(−1)
[25]

Coloration Index (CI) RED−BLUE
RED [26]

Chlorophyll Index Green (CIgreen) NIR
GREEN − 1 [22,38,39]

Chlorophyll Index Red Edge (CIrededge) NIR
RED EDGE − 1 [22,38,39]

Chlorophyll Vegetation Index (CVI) NIR× RED
GREEN2 [40]

Double Difference Index (DD) (749nm− 720nm)− (701nm− 672nm) [41,42]
Enhanced Vegetation Index (EVI) 2.5× NIR−RED

(NIR+6RED−7.5BLUE)+1 [21,22]

Green Atmospherically Resistant Vegetation Index (GARI) NIR−(GREEN−(BLUE−RED))
NIR−(GREEN+(BLUE−RED))

[39,43]

Green-Blue NDVI (GBNDVI) NIR−(GREEN+BLUE)
NIR+(GREEN+BLUE) [44]

Global Environment Monitoring Index (GEMI)

(
n× (1− 0.25n)− RED−0.125

1−RED

)
n =

2×(NIR2−RED2)+1.5×NIR+0.5×RED
NIR+RED+0.5

[45]

Simple Ratio Greenness Index (GI) GREEN
RED [42,46]

Green Normalized Difference Vegetation Index (GNDVI) NIR−GREEN
NIR+GREEN [22,38]

Tasselled Cap—Vegetation (GVI)
−0.2848× Blue −0.2435× Green− 0.5436× Red

+0.7243× NIR + 0.0840× SWIR
−0.1800× SWIR

[47,48]

Infrared Percentage Vegetation index (IPVI)
NIR

NIR+RED
2 × (NDVI + 1) [49,50]

Log Ratio (LogR) log
(

NIR
RED

)
-

Misra Green Vegetation Index (MGVI) −0.386× GREEN − 0.530× RED + 0.535×
REDEDGE + 0.532× NIR [37,51]

Modified NDVI (mNDVI) NIR−RED
NIR+RED−2×BLUE [46,52]

Modified Simple Ratio (mSR) NIR−BLUE
RED−BLUE [46,50]

Modified Simple Ratio 2 (mSR2)
(

NIR
RED

)
− 1√

( NIR
RED )+1

[53]

Normalized Difference NIR / Red Normalized Difference
Vegetation Index (NDVI)

NIR−RED
NIR+RED [19,20]

Normalized Green (NG) GREEN
NIR+RED+GREEN [54]

Normalized Near Infrared (NNIR) NIR
NIR+RED+GREEN [54]

Hyperspectral Perpendicular VI (PVIhyp)
NIR−a×807−b

(1+a2)0.5

a = 1.17, b = 3.37
[48]

Plant Senescence Reflectance Index (PSRI) RED−BLUE
NIR [55,56]

Reflectance at the Inflexion Point (Rre) RED+NIR
2 [57]

Red-Edge Stress Vegetation Index (RVSI) 718+748
2 − 733 -

Structure Intensive Pigment Index (SIPI) NIR−BLUE
NIR−RED [41,46]

Simple Ratio (SR) NIR
RED -
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