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Abstract: Due to the precarious underwater environment, many tasks are impossible to carry out
with manned vehicles. It is due to the development of autonomous underwater vehicles (AUVs)
that exploration, surveillance, and research have been carried out like never before. AUVs are now
extensively used for lengthy missions but face challenges in maintaining an accurate position over a
larger operational area due to water currents and oceanic complexities. Hence, more sophisticated
navigation systems are required for AUVs. As global positioning systems (GPS) and radio signals
are attenuated under water, it becomes difficult to navigate subsea areas. In this research work, we
propose the accurate position estimation of an AUV by a Kalman filter using an inertial navigation
system (INS). In the MATLAB environment, a sample of the INS accelerometer’s data is simulated
to determine position from acceleration using the Kalman filter, and the double integration method
of determining position is contrasted. Our experimental results imply that our suggested method
produces better outcomes.

Keywords: inertial navigation system (INS); Kalman filter (KF); localization; autonomous underwater
vehicle (AUV); global positioning systems (GPS)

1. Introduction

AUVs are robotic vehicles with a propulsion system for navigation and an embedded
computer for decision making [1]. It belongs to the class of unmanned underwater vehicles
(UUVs). AUVs can perform a broad range of subsea tasks in both civil and military settings,
including the monitoring of ocean pollutants [1], the search for mines [2], the exploration of
marine science [3], the inspection of pipelines [4], anti-submarine warfare [5], etc. For these
applications, AUVs require localization and precise sensor technologies. Alternatively put,
a measurement is only useful if its time, place, and orientation are precisely known. It is
critical to have the right equipment when using AUVs to carry out these measurements.

Accurate location and orientation information must be time-synchronized with each
measurement taken. However, it is difficult to meet these requirements due to the rapid
attenuation of higher-frequency signals, unstructured nature of the undersea environment,
and unavailability of global positioning system (GPS) signals underwater. Inaccurate
localization could cause the vehicle to deviate from the pre-planned mission route, resulting
in an inaccurate geo-located dataset and a compromised mission. In the worst cases, mission
failure could result in an AUV being lost or destroyed.

AUV localization has been the subject of numerous studies. In this research work, the
inertial navigation system (INS) is utilized to obtain the AUV’s position information and to
eradicate the noise of sensor readings using a Kalman filter.
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The paper is setup as follows: The literature review for this study on localization
techniques is presented in Section 2. The problems with AUV navigation are discussed in
Section 3. The methodology is presented in Section 4. Section 5 contains the Results and
Discussion. Section 6 offers the Conclusions.

2. Literature Review

For an autonomous underwater vehicle to properly perform its objective, accurate
localization information is necessary. In this assessment of the literature, we looked into
the numerous navigational methods put forth by academics.

In the paper title “A particle filter approach for AUV localization” by [6], the particle
filter technique was used for AUV localization. The results from their experiments validated
the algorithm’s great performance, which was unaffected by noisy measurements.

An occupancy-grid-based SLAM technique for AUVs was proposed in [7]. A local
map was taken from the entire map and applied to each sonar scan as a scanning grid
map. The map matching procedure was then optimized using the PSO-GA. The AUV
status was then corrected using the position and orientation determined with the matching
procedure. The updated grid map was updated based on the modified AUV status, which
also converted the sonar data into a global coordinate. Field data showed that the suggested
SLAM system can adapt to underwater environments and is accurate enough for ocean
engineering applications.

A stereo visual odometry system was proposed for AUV navigation in the paper titled
“Selective visual odometry for accurate AUV localization” written by [8]. The method solely
uses local information and achieves a minimal drift error even for long distances.

An acoustic localization technique for small, low-cost autonomous underwater vehi-
cles (AUVs) was presented in the publication “One-Way Travel-Time Inverted Ultra-Short
Baseline Localization for Low-Cost Autonomous Underwater Vehicles” by [9]. An instan-
taneous estimation of an AUV’s location was provided by its ultrashort baseline (USBL)
receiver array, which calculates the range, azimuth, and inclination to the transmitter using
one-way traveltime (OWTT) and phased-array beamforming.

A stereo-vision-based AUV navigation system to reset the integrated INS error was
proposed in the paper “Stereo-vision-based AUV navigation system for resetting the inertial
navigation system error” by [10]. Using INS and the stereo-vision system, AUV navigation
and docking station return tests were carried out in a test tank. The suggested method could
dock the AUV and reset the integrated INS error, according to their experimental findings.

In the work “Adaptive Step Size Learning With Applications to Velocity Aided Inertial
Navigation System” presented by [11], an adaptive tuning approach based on supervised
learning to choose the right INS step size was provided. In order to achieve this, a velocity
error bound was established, allowing the INS/DVL or the INS/GNSS fusion filter to
operate under less-than-ideal conditions while still reducing the computing load. The
results from the simulations and field tests demonstrated the advantages of applying their
suggested strategy. Their suggested architecture can also be used in other fusion scenarios
involving different kinds of platforms or sensors.

The paper “AUV localization in an underwater acoustic positioning system” written
by [12] proposed a method for AUV localization by looking into various sources of source
localization uncertainty in an underwater acoustic positioning system. The non-linear
analyses’ findings were contrasted with linearized uncertainty estimates. Linearization
errors were demonstrated to be negligibly large for each factor, and the paper concluded
that a linearized estimate can be used for the localized uncertainty of an AUV.

3. Problem Statement

A stable and dependable navigation system is necessary for AUVs to successfully
complete missions. Due to the sea’s unknown environment and the fact that GPS and GNSS
satellites do not operate underwater, underwater navigation becomes more challenging.
Researchers have developed a number of navigational methods, such as inertial navigation
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systems and acoustic navigation systems. The acoustic position system gives us direct
estimates of the position between points. But, this method is expensive and operationally
demanding. Therefore, it is necessary to create an AUV navigation system that can pinpoint
its location using sensor data. In this research work, we design a navigational system
for an AUV using an inertial navigation system technique based on the dead reckoning
system [13] concept.

4. Methodology

In this paper, we employ an AUV localization technique that uses data from inertial
navigation sensors; then, the double integration method and a Kalman filter will be used
to estimate the AUV’s position using the accelerometers’ output, its acceleration. The
system first determines and estimates the state variables before adjusting them as necessary.
Second, the measurements are continually updated in order to compute the error correction
and state prediction. The Kalman filter (KF) achieves a precise position by reducing the
impact of unnecessary noise on state estimation [14]. Figure 1 presents the methodology
for the localization.

Figure 1. System underlying the structure.

Due to the lack of actual INS data from the AUV, sample data were collected to validate
our proposed method over an 1800 m loop around the university campus over 250 ms.
According to Figure 2, the test system consists of an Arduino board and an ADXL-335
accelerometer module. This approach appeared to be the most achievable and useful
for actual research. The data were then passed through the Kalman Filter and double
integration algorithms for testing. In this experiment, the two algorithms were examined
and further compared.

Figure 2. Test system prototype.
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4.1. Double Integration

By using the double integration method, it is possible to determine a vehicle’s displace-
ment from its acceleration. This method is simpler and less expensive while still proving to
be reliable due to its built-in filtering capabilities as a pseudo low-pass filter, which gives
the data that are needed for this study. For calculating the distance, the following formula
was used. Figure 3 shows a flow diagram of the double integration process.

d =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (1)

where x, y, z are the distance of their respective axes.

Figure 3. Flowchart of double integration process.

4.2. Kalman Filter

On the basis of the equation of motion, the Kalman estimator algorithm was used; the
state equations are as follows:[

P(t)
V(t)

]
=

[
1 t
0 1

][
P(0)
V(0)

]
+

[
t2

2
t

]
a (2)

As demonstrated, velocity and position information can be taken from the experiment-
measured acceleration input. The Kalman estimator then receives these data and predicts
the output based on the measured data. The following parameters are modified for analysis,
along with their respective ranges as shown in Table 1.

Table 1. Adjusted parameters for the system.

Adjusted Parameters Values

State Noise 0.05
Measurement Noise 10

Sample Time 0.25 s
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5. Results and Discussion

In order to estimate position of an AUV, the ADXL-355 module was used to acquire
test data, which was then used as described in Section 4. The module offers accelerometer
data in all three Cartesian coordinate systems but for simplicity, only the XY plane was
taken into consideration. The results of corresponding methods and their comparative
analysis are presented in the subsections.

5.1. Double Integration Method Result

The acceleration readings contain some noise and error, as seen in Figures 4 and 5.
The first integration results depicted in Figures 6 and 7 make it obvious that the integration
procedure naturally eliminated noise readings. The displacement in the x and y directions
is shown in Figures 8 and 9, respectively, after being double-integrated.

Figure 4. Acceleration for x-axis.

Figure 5. Acceleration for y-axis.
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Figure 6. Velocity for x-axis.

Figure 7. Velocity for y-axis.

Figure 8. Displacement for x-axis.
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Figure 9. Displacement for y-axis.

5.2. Kalman Filter Result

Figures 10 and 11 show the Kalman filter’s results. The KF performs significantly
better, and its state space is more closely aligned with its actual state. The dateset is
supported by the parameters chosen. The accuracy of the method is evaluated using the
evaluation metric root mean square error (RSME), and the measurement and estimation
RSME of the Kalman filter is 0.4960.

Figure 10. Displacement for y-axis.
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Figure 11. Displacement for y-axis.

5.3. Comparative Analysis

We can infer from Figures 8–11 that the Kalman filter prediction model is in close
agreement with the estimated position compared with the double integration method.
According to the findings, the Kalman filter is recommended since it offers a more precise
prediction model. Despite the small implementation scale, the simulated data show that
the suggested methodology is useful for locating AUVs. However, the results may lose
linearity and errors may grow if real AUV data are used instead. In that case, an extended
or unscented Kalman filter will be required to handle the nonlinear data.

6. Conclusions

In this paper, we simulated a vehicle’s accelerometer data to determine its position
as a test scenario for AUV localization because of the unavailability of the AUV’s original
data. The experimental results compared two methods using the double integration of
acceleration and sensor data fused with a Kalman filter. The experimental results show that,
in the double integration method, position error increases with time, whereas the results
with the Kalman filter follow the actual path trajectory, thus showing that the Kalman filter
gives a better estimate of position compared with the double integration method.
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1. Vasilijević, A.; Nad̄, Ð.; Mandić, F.; Mišković, N.; Vukić, Z. Coordinated Navigation of Surface and Underwater Marine Robotic

Vehicles for Ocean Sampling and Environmental Monitoring. IEEE/ASME Trans. Mechatron. 2017, 22, 1174–1184. [CrossRef]
2. Hagen, P.E.; Hansen, R.E.; Gade, K.; Hammerstad, E. Interferometric synthetic aperture sonar for AUV based mine hunting: The

SENSOTEK project. In Proceedings of the Unmanned Systems 2001, Baltimore, MD, USA, 31 July–2 August 2001.
3. Pascoal, A.; Oliveira, P.; Silvestre, C.; Sebastião, L.; Rufino, M.; Barroso, V.; Gomes, J.; Ayela, G.; Coince, P.; Cardew, M.; et al.

Robotic ocean vehicles for marine science applications: The european asimov project. In Proceedings of the OCEANS 2000
MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158), Providence, RI, USA, 11–14 September
2000; Volume 1, pp. 409–415. [CrossRef]

4. Liu, Y.; Wang, F.; Lv, Z.; Cao, K.; Lin, Y. Pixel-to-action policy for underwater pipeline following via deep reinforcement learning.
In Proceedings of the 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), Lanzhou, China,
24–27 August 2018; pp. 135–139.

5. Been, R.; Hughes, D.T.; Potter, J.R.; Strode, C. Cooperative anti-submarine warfare at NURC moving towards a net-centric
capability. In Proceedings of the OCEANS’10 IEEE SYDNEY, Sydney, NSW, Australia, 24–27 May 2010; pp. 1–10.

6. Maurelli, F.; Krupinski, S.; Petillot, Y.; Salvi, J. A particle filter approach for AUV localization. In Proceedings of the OCEANS
2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–7. [CrossRef]

7. Mu, X.; Yue, G.; Zhou, N.; Chen, C. Occupancy Grid-Based AUV SLAM Method with Forward-Looking Sonar. J. Mar. Sci. Eng.
2022, 10, 1056. [CrossRef]

8. Bellavia, F.; Fanfani, M.; Colombo, C. Selective visual odometry for accurate AUV localization. Auton. Robot. 2017, 41, 133–143.
[CrossRef]

9. Rypkema, N.R.; Fischell, E.M.; Schmidt, H. One-way travel-time inverted ultra-short baseline localization for low-cost autonomous
underwater vehicles. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 4920–4926. [CrossRef]

10. Hsu, H.Y.; Toda, Y.; Yamashita, K.; Watanabe, K.; Sasano, M.; Okamoto, A.; Inaba, S.; Minami, M. Stereo-vision-based AUV
navigation system for resetting the inertial navigation system error. Artif. Life Robot. 2022, 27, 165–178. [CrossRef]

11. Or, B.; Klein, I. Adaptive Step Size LearningWith Applications to Velocity Aided Inertial Navigation System. IEEE Access 2022, 10,
85818–85830. [CrossRef]

12. Thomson, D.; Dosso, S. AUV localization in an underwater acoustic positioning system. In Proceedings of the 2013 MTS/IEEE
OCEANS, Bergen, Norway, 10–14 June 2013; pp. 1–6. [CrossRef]

13. Brossard, M.; Barrau, A.; Bonnabel, S. AI-IMU dead-reckoning. IEEE Trans. Intell. Veh. 2020, 5, 585–595. [CrossRef]
14. Liu, J.; Guo, G. Vehicle localization during GPS outages with extended Kalman filter and deep learning. IEEE Trans. Instrum.

Meas. 2021, 70, 1–10. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TMECH.2017.2684423
http://dx.doi.org/10.1109/OCEANS.2000.881293
http://dx.doi.org/10.1109/OCEANS.2008.5152014
http://dx.doi.org/10.3390/jmse10081056
http://dx.doi.org/10.1007/s10514-015-9541-1
http://dx.doi.org/10.1109/ICRA.2017.7989570
http://dx.doi.org/10.1007/s10015-021-00720-z
http://dx.doi.org/10.1109/ACCESS.2022.3198672
http://dx.doi.org/10.1109/OCEANS-Bergen.2013.6608140
http://dx.doi.org/10.1109/TIV.2020.2980758
http://dx.doi.org/10.1109/TIM.2021.3097401

	Introduction
	Literature Review
	Problem Statement
	Methodology
	Double Integration
	Kalman Filter

	Results and Discussion
	Double Integration Method Result
	Kalman Filter Result
	Comparative Analysis

	Conclusions
	References

