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Abstract: Due to its superior performance, rapid development, and environmental friendliness, the
permanent magnet synchronous machine (PMSM), in all of its various design forms, is becoming a
crucial component in electric vehicle (EV) applications. This research article shows the numerical
implementation and design of a potential vector control for PMSM, intended for electric vehicle
application and implemented analytically to achieve maximum efficiency at the lowest possible costs.
Additionally, this paper contains crucial machine features, operation assumptions, and simulation
validations that are used to actualize machine design. It is shown, via intensive analytical expression
and discussion, that step-up changes account for 90% of the rated value, whereas step-down changes
account for 10% of the rated value. By implementing advanced measures, the present research
endeavors to augment the control effectiveness, operational efficiency, and dependability of PMSMs
in EVs.
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1. Introduction

Many people believe that electric vehicles will be the norm in the future since they
are extremely efficient, emit no localized pollution, are silent, and allow the grid operator
to regulate electricity. However, there are still significant problems with electric cars that
need to be fixed. A limited driving range, a lengthy charging period, and a hefty price are
the three primary difficulties. These three primary issues are all connected to the vehicle’s
battery system. The battery pack should have adequate power to manage accelerations and
decelerations, as well as enough energy to allow for a specific driving range. To accurately
anticipate the energy consumption of electric automobiles, a precise model of the vehicle is
essential [1,2]. An electric vehicle’s model is quite intricate since it has so many distinct
parts, such as a battery, electric motor, gearbox, and power electronics. The choice of each
power system component (electric machines, power electronics, batteries, etc.) will thus
receive less attention because this is a very challenging undertaking in and of itself. As a
result, this chapter’s primary focus will be on the approach to the modeling and design
process [3–5]. However, the approach described here is equally appropriate for different
architectural styles and component selections.
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2. Research Areas in EVs

Due to the rising concerns regarding energy efficiency, energy prices, and environmen-
tal protection, electric vehicle (EV) technology has grown significantly in recent years. Ap-
plications for rare-earth magnets in SM motor made of neodymium–iron–boron (Nd2Fe14B)
and samarium–cobalt (Sm2Co17) therefore generate a high degree of design, controllabil-
ity, efficiency, and torque, as well as dependability and robustness as demonstrated in
Table 1 [6].

Table 1. PM synchronous and induction motor comparison [7].

Quality Synchronous Motor Induction Motor

Speed Constant and unaffected
by load

The speed diminishes as the
load rises

Torque-voltage characteristic Direct relationship between
torque and input voltage

Direct relationship between
torque and input voltage

squared

Cost More expensive than IM Cost-effective motor

From milli-Watt-secs to hundreds of kWs, PM motors are employed in a variety of
power applications. There are also initiatives to use PMs in large motors with a minimum
1 MW rating. Due to this, PM motors are used in a wide variety of applications, from step-
ping motors for timepieces to enormous PM synchronous motors for ship propulsion (e.g.,
icebreakers, naval frigates, cruise ships, and medium-sized cargo boats) [8,9]. A schematic
diagram of an electric car with a PMSM drive is illustrated in Figure 1.
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3. Mathematical Modelling of PMSM
3.1. PM Synchronous Motor Described Mathematically

Space vector theory may be utilized to comprehend the vector control design paradigm.
Complex space vectors are used to express the three-phase motor quantities. Two orthogo-
nal axes are all that are required to describe the complex space vectors. The motor may be
viewed as a two-phase mechanism [10].

3.2. PM Synchronous Motor Vector Control

Field-oriented theory is utilized to regulate the space vectors of magnetic flux, current,
and voltage in the elegant control approach known as vector control for a PM synchronous
motor. The coordinate system may be set up to separate the vectors into components
that produce magnetic fields and torque [11–14]. This vector control method was created
specially to give PM synchronous motors a similarly dynamic performance. In the given
equation, the analytical formulations of EVs are as follows:

is = k
(

Isa + aIsb + a2 Isc

)
(1)
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uSA = RSisa +
d
dt

ΨSA, uSB = RSiSB +
d
dt

ΨSB, uSC = RSiSC +
d
dt

ΨSC,
dω

dt
=

p
J

[
3
2

p
(
ΨSαiSβ − ΨSβiSα

)
− TL

]
(2)

3.3. An Illustration of Vector Control

To implement vector control, these steps should be followed and Figure 2 should be
implemented:

• Measurements of the motor’s phase voltages and currents;
• Clarke transformation to convert them into the two-phase system;
• The inverse Park transformation is used to convert the stator-voltage space vector

from the d–q coordinate system to the two-phase system, and output is produced.
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4. Vector Controller Design Implementation

The design started with an adaptive control strategy. This vector controller technique
dynamically modifies control parameters based on the motor’s operating conditions, boost-
ing efficiency, and performance under varying load conditions, as depicted in the results.
Then, implementing fault-tolerant control techniques allows the vector controller to detect
and mitigate motor or drive system defects, ensuring continued operation and minimizing
downtime, as explained in Table 2 below.

Table 2. Controller design implementation.

Sr. No. Design Procedure Implementation Plan Sr. No. Design Procedure Implementation Plan

1. Sampling Time
• Sampling time (s)

allocation
• Simulation time step.

3
Maximum
switching
frequency

• Selection
• This is not used when

using the average
value inverter.

2. Current controller
hysteresis band

• This value is the total
bandwidth distributed
symmetrically around.

4
The controller
measurement

vector

• The torque reference
which is speed error

• Second is the speed
reference.

5. Simulation of PMSM Control

The simulation of a PMSM was performed in MATLAB/Simulink by using a block of
PSMS available in block library of SimPowerSystems in the category of Machines.

5.1. Case I (Wref = 300 rpm)

In Figure 3 below, the simulation results, using a 300 rpm reference speed, are dis-
played. When the rated torque is changed stepwise, the resulting speed waveform retains
its reference value. The initial setting for the load torque imparted to the machine’s shaft
is 3 Nm, which is the nominal value. At t = 0.5 s, it increases to 10 Nm, and at 1.5 s, it
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decreases to 0 Nm. Step-up changes account for 90% of the rated value, whereas step-down
changes account for 10% of the rated value.
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5.2. Case II (Wref = 1000 rpm)

The reference speed used in this case is 800 rpm. All of the results are shown in
Figure 4 below.
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6. MATLAB Simulation for Desired Speed and Torque Response

The MATLAB simulation below displays a permanent magnet synchronous machine
(PMSM) and an inverter scaled for use in a typical car. Although in this instance the inverter
is directly connected to the vehicle’s battery, a DC–DC converter step is typically present
in the middle. As illustrated in Figure 5, when building the PMSM controller, the model
may be used to determine the architecture and gains that will deliver the required torque
performance.
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Figure 5. MATLAB simulation showing achievement of required torque.

The rotor of the PM is fitted with several permanent magnet materials, including
Sm2Co3, Sm2Co17, and Nd-Fe-B. The effectiveness of the PMSM is also altered by altering
the magnets [15].

7. Results and Discussion

The paper focuses on the control performance and analysis of Permanent Magnet
Synchronous Machines (PMSMs) used in electric vehicles (EVs). This research achieves
the numerical design and implementation to make a possible vector control strategy for
PMSMs in EVs as efficient and cost-effective as possible. The simulation validation, machine
features, and operation assumptions are all considered, and it is pointed out that 90% of
the rated value comes from step-up changes, and 10% comes from step-down changes.
The research suggests novel methods of utilizing PMSMs in electric vehicles (EVs) which
work better, run more effectively, and are more reliable. An EV’s motor drive, comprising
a permanent magnet synchronous motor, is modeled using a design procedure because
the characteristics of each component of the power system converters are utilized. The
use of independent controllers for each input with the least amount of power loss and the
creation of a suitable process for controller design are specifically the primary improvements
incorporated.
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