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Abstract: This research paper presents a study on the preparation and characterization of nano
graphite materials (NGMs) from lemon and orange peel powder using the pyrolysis method. The
NGMs were analyzed using X-ray Diffractometer (XRD) and Fourier transform infrared spectroscopy
(FTIR) for structural and compositional properties. The XRD analysis confirmed the crystalline nature
of the NGMs, while the FTIR analysis provided information about the functional groups present in
the materials. Our results suggest that NGMs fabricated from lemon and orange peel powder have
potential for applications in various fields, including energy storage and catalysis.

Keywords: nano graphite materials (NGMs); lemon peel; orange peel; pyrolysis; characterization;
X-ray diffractometer; Fourier transform infrared spectroscopy; structural properties; compositional
properties; energy storage; catalysis

1. Introduction

Nano graphite materials (NGM) have received a lot of interest lately because of their
distinctive qualities, including chemical stability, high water solubility, affordability, and
fluorescent traits (Wang, (2014)). It is possible to roughly divide the synthesis of NGM
into “top-down” and “bottom-up” methods [1,2]. By dissolving bigger carbon materials
using techniques including arc discharge, laser ablation, and chemical oxidation, NGMs
are created in the top-down process [3–5]. On the other hand, the bottom-up strategy uses
processes including hydrothermal, thermal-decomposition, and microwave approaches to
create NGMs from molecular carbon precursors [5–11]. Many of these synthesis procedures,
however, involve numerous steps and are laborious; they frequently need pricey carbon
sources and follow-up surface passivation [12–15].

Numerous green synthesis methods have been studied to address these issues. These
methods make use of low-cost and organic carbon sources such chitosan, egg yolk oil, juice
from oranges, lemon peel, bee pollen, collagen, humic substances, the hair, nut shells, milk
from soybeans, cashew gum, and garlic [6,13,15–21]. The seasonal variation and foreign
contaminants present in natural carbon sources, which might influence the repeatability,
shape, and size distribution of NGMs [12], provide difficulties with their utilization. It is still
very difficult to achieve uniformity and essential purity in NGMs made from natural carbon
sources [6,13,15–20]. Additionally, conventional analytical techniques that concentrate on
pH-dependent photoluminescence (PL) spectra of NGMs sometimes miss important data
from various excitation wavelengths and pH ranges [6,8,9,13,16–20,22].

As a natural carbon source, lemon and orange peels were used in this work to create
nano graphite materials (NGMs) by the pyrolysis method. This method makes it possible
to create NGMs with a limited size distribution, a feat that has never been accomplished
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utilizing the pyrolysis of natural carbon sources [7,23]. We investigate how reaction time
and temperature affect the pyrolysis procedure, offering information on how to create
NGMs with useful features. Notably, the created NGMs show outstanding colloidal
solubility, photo-stability, and environmental stability without the need for further surface
passivation procedures to improve their fluorescence capabilities [24].

The effective synthesis of NGMs from lemon and orange peels offers up new opportu-
nities for their use in a variety of industries, including sensors, solar cells, supercapacitors,
LED technology, printing, and bio-sensing [13,25–29]. The objective of this study is to en-
hance our understanding of the potential applications of nano graphite materials (NGMs)
as humidity sensors by utilizing a sustainable and cost-effective carbon source and applying
machine learning analysis techniques. Humidity sensors play a crucial role in various fields,
including environmental monitoring, agriculture, and industrial processes. However, the
development of high-performance humidity sensors with improved sensitivity, stability,
and cost-effectiveness remains a challenge.

In this research, NGMs were synthesized from lemon and orange peel powder using
the pyrolysis method. The use of these natural carbon sources provides a sustainable and
affordable alternative for the fabrication of NGMs. The synthesis process involved grading,
sorting, and washing the peel, followed by crushing/grinding and pyrolysis at 500 ◦C for
3 h. After synthesis, the NGMs were subjected to sonication, centrifugation, and drying
processes to obtain the final material.

To evaluate the suitability of NGMs as humidity sensors, their properties were char-
acterized using various techniques. X-ray diffraction analysis (XRD) was used for phase
identification and characterization of crystalline materials based on their diffraction pat-
terns. Fourier transform infrared spectroscopy (FTIR) provided insights into the functional
groups present in the NGM experimental methods.

The following steps are for the synthesis of NGMs by orange and lemon peel.

2. Synthesis of NGMs

Nano graphite materials were synthesized by the pyrolysis method. Grading, sorting,
and washing lemon and orange peel was carried out to obtain fresh lemon and orange
peels, which were then carefully sorted to remove any damaged or discolored parts. The
peels were then thoroughly washed with deionized water to remove any surface impurities.
The washed lemon and orange peels were dried to remove excess moisture, and then they
were crushed or ground into fine particles. This step aimed to increase the surface area
of the peels for better pyrolysis efficiency. The crushed or ground peels were subjected
to pyrolysis in a controlled environment at a temperature of 500 ◦C for a duration of
3 h. Pyrolysis involves the decomposition of organic materials in the absence of oxygen,
resulting in the formation of carbon-based materials such as NGMs. After pyrolysis, the
resulting NGMs were subjected to sonication for 10 min. Sonication involves the use of
ultrasonic waves to disperse and break down any aggregated particles, ensuring a more
uniform dispersion of NGMs. To separate any remaining impurities or larger particles from
the NGMs, centrifugation was performed at a speed of 800 rpm for 10 min. Centrifugation
causes the NGMs to settle at the bottom, while impurities and larger particles are separated
and collected in the supernatant. The purified NGMs were then dried to remove any
residual moisture. This step aimed to obtain dry and stable NGMs suitable for further
characterization and application.

2.1. Characterization of NGM
2.1.1. X-ray Diffraction Analysis (XRD)

XRD is a quick analytical method for characterizing crystalline materials based on
their diffraction patterns and identifying their phases. Constructive interference is created
when X-rays make contact with a crystallite NGM sample, and these diffracted X-rays
are then detected, processed, and tallied, exposing the outcomes that are depicted in
Figure 1. The XRD spectra for NGMs made from powdered lemon peel are displayed in
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Figure 1. For NGMs, one sharp peak can be observed at 2θ = 22.8◦. With the use of the
Scherrer Formula, this peak indicated the presence of a well-ordered layer structure with
a 0.365754 nm d-spacing (FWHM = 0.825◦) and determined the size of NGM made from
lemon peel powder to be 9.818 nm. An as-synthesized NGM sample’s purity may also be
determined using XRD. The inadequate carbonization of lemon peel powder resulted in
many impurity peaks in the XRD pattern of NGM, as shown in Figure 1 above. Although
the XRD is a useful tool for characterizing NGM with a crystallite structure, it cannot be
used to determine the essential characteristics of amorphous NGM.

Eng. Proc. 2023, 46, x 3 of 8 
 

 

2.1. Characterization of NGM 
2.1.1. X-ray Diffraction Analysis (XRD) 

XRD is a quick analytical method for characterizing crystalline materials based on 
their diffraction patterns and identifying their phases. Constructive interference is created 
when X-rays make contact with a crystallite NGM sample, and these diffracted X-rays are 
then detected, processed, and tallied, exposing the outcomes that are depicted in Figure 
1. The XRD spectra for NGMs made from powdered lemon peel are displayed in Figure 
1. For NGMs, one sharp peak can be observed at 2θ = 22.8°. With the use of the Scherrer 
Formula, this peak indicated the presence of a well-ordered layer structure with a 0.365754 
nm d-spacing (FWHM = 0.825°) and determined the size of NGM made from lemon peel 
powder to be 9.818 nm. An as-synthesized NGM sample’s purity may also be determined 
using XRD. The inadequate carbonization of lemon peel powder resulted in many impu-
rity peaks in the XRD pattern of NGM, as shown in Figure 1 above. Although the XRD is 
a useful tool for characterizing NGM with a crystallite structure, it cannot be used to de-
termine the essential characteristics of amorphous NGM. 

 
Figure 1. Diffraction pattern of NGMs fabricated from lemon peel powder. 

The XRD spectra for carbon nano dots made from the powdered orange peel are dis-
played in Figure 2. At 2θ = 23°, one distinct peak for NGMs can be seen. This peak demon-
strated a well-ordered layer structure with a 0.395199 nm d-spacing (FWHM = 0.689°), and 
the Scherrer formula was used to determine the size of the NGM made from orange peel 
powder, which was determined to be 11.760 nm. An as-synthesized NGM sample’s purity 
may also be determined using XRD. Figure 2 shows that a number of impurity peaks were 
seen in the XRD pattern of NGMs as a result of the orange peel powder’s inadequate car-
bonization. The reaction temperature and reaction time are the causes of the as-synthe-
sized NGM's size fluctuation. 

Figure 1. Diffraction pattern of NGMs fabricated from lemon peel powder.

The XRD spectra for carbon nano dots made from the powdered orange peel are dis-
played in Figure 2. At 2θ = 23◦, one distinct peak for NGMs can be seen. This peak demon-
strated a well-ordered layer structure with a 0.395199 nm d-spacing (FWHM = 0.689◦),
and the Scherrer formula was used to determine the size of the NGM made from orange
peel powder, which was determined to be 11.760 nm. An as-synthesized NGM sample’s
purity may also be determined using XRD. Figure 2 shows that a number of impurity
peaks were seen in the XRD pattern of NGMs as a result of the orange peel powder’s
inadequate carbonization. The reaction temperature and reaction time are the causes of the
as-synthesized NGM’s size fluctuation.

2.1.2. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra were used to corroborate the surface functional groups and chemical
makeup of the as-synthesized NGMs from lemon peel powder. According to Figure 3, the
NGMs FTIR spectra include prominent peaks at 3250, 2350, 1620, 1380, and 1110 cm−1,
which correspond to O-H, C-H, C=O, C=C, and (C-O or C-H) accordingly. While the O-H,
C=O, and C-H bending peaks imply that the NGMs contain O-H, C=O, and C-H surface
moieties linked to their surfaces, the existence of the C=C peak suggests that the NGMs are
formed of graphitic structure. The surface of the as-synthesized NGMs comprises inherent
negatively charged moieties, which are necessary for long-term water solubility, according
to FTIR analysis. According to Figure 4, the NGMs FTIR spectra include substantial peaks
at 3200, 2380, 1595, 1395, and 1105 cm−1, which correspond to O-H, C-H, C=O, C=C, and
(C-O or C-H) accordingly. While the O-H, C=O, and C-H bending peaks imply that the
NGMs contain O-H, C=O, and C-H surface moieties linked to their surfaces, the existence
of the C=C peak indicates that the NGMs are formed of graphitic structure. The surface of
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as-synthesized NGMs comprises inherent negatively charged moieties, which are necessary
for long-term water solubility, according to FTIR research.
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3. Results and Analysis

In this section, we will discuss the results obtained from the X-ray diffraction (XRD)
analysis and Fourier-transform infrared spectroscopy (FTIR) experiments. The detailed
XRD patterns of the nano-materials (NGMs) can be found in Appendix A, which reveal
critical insights into their crystalline nature, crystal structure, and crystallite size. Simi-
larly, the FTIR spectra, along with the identified functional groups, are also presented in
Appendix A, offering valuable information about the NGMs’ chemical composition and
potential applications.

4. Conclusions

In conclusion, the utilization of waste and by-products in the synthesis of nano-
materials (NGMs) represents a significant advancement, driven by the diverse range of
applications associated with these materials. Notably, the composition of the raw materi-
als obtained from waste sources, such as lemon (9.818 nm) and orange (11.760 nm) peel
powders, results in varying quantum yields, highlighting the influence of their hetero-
geneous nature (see Table 1). Furthermore, the adoption of different reaction conditions
and synthesis methods introduces further complexities regarding the chosen route. Even
when starting from identical raw materials and employing the same synthesis method,
the variation in synthesis parameters leads to distinct effects on the characteristics and
properties of the resulting NGMs. This underscores the importance of understanding
and optimizing the synthesis process for the desired application of these environmentally
friendly nanomaterials.

Table 1. Size of NGMs fabricated from fruit peel powder.

Fruit Size of (NGM) (nm)

Lemon 9.818
Orange 11.760
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Appendix A

The XRD patterns of the NGMs revealed diffraction peaks at specific angles, indicating
the presence of crystalline phases. The peak positions and intensities were analyzed to
determine the crystal structure of the NGMs. By comparing the obtained diffraction pattern
with standard reference patterns, the crystal structure of the NGMs could be identified.
The crystallinity of the NGMs was evaluated by calculating the crystallite size using the
Scherrer equation.

The XRD analysis provided valuable insights into the structural properties of the
NGMs, confirming their crystalline nature and providing information about the crystal
structure and crystallite size.

The FTIR spectra of the NGMs exhibited characteristic absorption bands that corre-
sponded to specific functional groups present in the materials. The peaks observed in the
spectra were assigned to different vibrations and modes associated with chemical bonds. By
comparing the obtained spectra with reference spectra and databases, the functional groups
present in the NGMs were identified. The intensity and position of the absorption peaks
were analyzed to gain insights into the chemical composition and bonding characteristics
of the NGMs.

The FTIR analysis provided valuable information about the functional groups present
in the NGMs, allowing for a better understanding of their compositional properties and
potential applications in various fields.
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