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Abstract: The classical problem of islanding detection in distributed generation falls into the com-
monly used categories known as passive, active, and hybrid techniques. These approaches vary in
terms of their accuracy, security, and dependability. Detecting islanding in modern inverter-based
distribution systems is of the utmost importance to ensuring the protection of equipment, ensuring
the safety of workers, and preventing operational and cascaded faults when the system is specially
subjected to renewable integration. This research paper presents a technical comparison of the afore-
mentioned techniques, discussing their detection rate, Non-Detection Zone (NDZ), distinct topologies,
and their effectiveness in integration for low-frequency grids. The review offers a thorough analysis
comparing the key attributes found in the current literature while also highlighting the forthcoming
needs for advanced management, optimization, and control technologies. These technologies are
crucial to effectively tackling the difficulties that arise from integrating renewable energy sources into
established grid systems.

Keywords: islanding detection; distribution generators; inverters; active; passive; hybrid

1. Introduction to the Islanding Detection Problem

Renewable energy capacity additions climbed by 17% in 2021, reaching a new high of
314 GW. Between 2022 and 2027, the capacity of all renewable energy sources is expected
to rise by 2400 GW. Advanced control, optimization, and management technologies are
necessary to solve the difficulties and hazards caused by this expansion. Effective islanding
detection is necessary for protecting the well-being of both equipment and workers and
avoiding unnecessary excursions that can result in malfunctions. According to IEEE,
“islanding is defined as a condition in which a portion of the utility system remains
energized while isolated from the rest of the utility system and contains both load and
distributed resources.” [1].

Islanding detection techniques have always been a critical concern ensure the safety
and reliability for the modern gird with the integration of low inertial distributed energy
resources. The techniques can finely be classified under passive and active methods which
can be sub-characterized to local and remote based on the methodology based on their
control response. The DER and the grid are connected to power the load at the Point of
Common Coupling (PCC), as shown in Figure 1. The main issue with islanding detection
is the presence of non-detection zone (NDZ). This is when the island grid cannot detect an
isolation from the main grid, which is referred to as a non-detection zone. This is caused
by a phenomenon known as a power mismatch, when islanding happens but the power
output from the DER is not sufficient and rather equally matches the load requirement.
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quency method is useful for identifying islanding incidents when load fluctuations or grid 
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found.. However, when the load changing rapidly, the active power mismatch (ΔP/P) may 
be challenging [3,4]. On the other side, ROCOF passive islanding detection requires mon-
itoring the grid frequency to isolate a portion of it when the RoCoF rises over a threshold, 
but this can experience transient peaks due to disturbances [4]. Heading toward a voltage 
imbalance occurs when there is an uneven distribution of voltages among the three phases 
of a three-phase electrical system, leading to voltage swings and potential equipment 
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of all methods comparing their unique features and research gap. Passive islanding tech-
nology checks voltage unbalance and disconnects the DER from the primary power grid 
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Quality factor 1 1 2.5 

Required islanding detection time  t < 2 s t < 2 s t < 2 s 
Normal frequency range (f0 − 1.5 Hz) ≤ f ≤ (f0 +1.5 Hz)  59.3 Hz ≤ f ≤ 60.5 Hz 59.3 Hz ≤ f ≤ 60.5 Hz 

Normal voltage range 85% ≤ V ≤ 115% 88% ≤ V ≤ 110% 88% ≤ V ≤ 110% 

Additionally, phase jump detection indicates that there is a shift in the phase angle 
between the output voltage and current on the DER side. When the phase error surpasses 
a specific limit, islanding is identified [7]. Evaluating the effect of harmonic distortion lev-
els before and after the construction of the island is part of the harmonic distortion 

Figure 1. IEEE1547 standard model [2].

2. Classification of Islanding Detection Techniques

As mentioned, islanding is further divided into three main classes passive, active,
and hybrid, as shown in Figure 2. Overvoltage and over/under-frequency approaches
use voltage-sensing devices to detect overvoltage and under voltage. The over/under
frequency method is useful for identifying islanding incidents when load fluctuations or
grid disturbances cause anomalous frequency levels as shown in Table 1. However, when
the load changing rapidly, the active power mismatch (∆P/P) may be challenging [3,4]. On
the other side, ROCOF passive islanding detection requires monitoring the grid frequency
to isolate a portion of it when the RoCoF rises over a threshold, but this can experience
transient peaks due to disturbances [4]. Heading toward a voltage imbalance occurs
when there is an uneven distribution of voltages among the three phases of a three-phase
electrical system, leading to voltage swings and potential equipment damage. Table 2
presents a comprehensive literature review of all methods comparing their unique features
and research gap. Passive islanding technology checks voltage unbalance and disconnects
the DER from the primary power grid when it reaches a specified threshold [5,6].
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Table 1. Comparison of International Standards for islanding detection schemes.

Parameters IEC 62116 IEEE 1547 IEEE 929

Quality factor 1 1 2.5

Required islanding detection time t < 2 s t < 2 s t < 2 s

Normal frequency range (f0 − 1.5 Hz) ≤ f ≤ (f0 +1.5 Hz) 59.3 Hz ≤ f ≤ 60.5 Hz 59.3 Hz ≤ f ≤ 60.5 Hz

Normal voltage range 85% ≤ V ≤ 115% 88% ≤ V ≤ 110% 88% ≤ V ≤ 110%

Additionally, phase jump detection indicates that there is a shift in the phase angle
between the output voltage and current on the DER side. When the phase error surpasses
a specific limit, islanding is identified [7]. Evaluating the effect of harmonic distortion
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levels before and after the construction of the island is part of the harmonic distortion
islanding technique. If the distortion caused by the harmonics levels is higher than a set
limit, islanding has taken place [8]. The PCC measures frequency over reactive power using
the ROCOF over reactive power technique (ROCOFRP). This method is appropriate for
practical implementation since it detects islanding down to very small power mismatches
of 0.05 MW and 0.05 MVar, which considerably improves accuracy. It is also low-cost and
has no impact on power quality [9].

Active islanding detection techniques in DERs induce power quality constraints by
causing a minor perturbation in the power signal. This is done in order to achieve smaller
non-detection zones compared to the passive methods [10–12]. The active frequency drift
(AFD) maintains a steady power factor and grid frequency when connected to the grid, but
when it is not, a slight change in the current reference allows it to gradually get closer to
the established criteria for detecting islanding [13–16]. The Sandia Frequency Shift Method
(SMFS) is explained by [17]. This technique extends the dead time of the inverter by adding
a tiny current to the output, which raises the output current frequency. After this frequency
rise, the over-frequency safety limit in the grid-islanded mode is achieved. This system’s
non-detection zone (NDZ) is less than that of the preceding active approach.

Additionally, the Sandia Voltage Shift (SVS) approach also solves power fluctuations
and inverter outages. For islanding detection, the Sandia Voltage delivers positive feedback
voltage to the Point of Common Coupling (PCC). It is one of the most effective active
feedback-based systems, detecting islanding when the amplifier’s voltage reaches a certain
threshold, but when linked to the grid, it can have an impact on the quality of the electric-
ity [17]. Xie et al. discussed the reactive power injection method, which detects islanding
when in the grid-disconnected mode. The reactive power injection approach uses a rotating
reference [18]. It deals with the problem of small NDZs by introducing reactive power and
altering the rotational frame of reference [4,11]. A comprehensive comparison of NDZ and
detection time for Passive and active methods is presented in Figures 3–6. Here the idea
and calculations of non-detection zones and detection rates are presented in a numeric bar
graph. We have estimated the data of all evaluations of different authors that have given
their results adjectively or comparatively as shown in Table 2.

The voltage imbalance and frequency set point approach are hybrid detection method
that uses both THD and VU passive parameters to accurately identify islanding events
during load shifts [4,19]. Hybrid Islanding Detection (HID) is an effective approach that
outperforms passive single-parameter approaches, but it can be misidentified if large loads
are switched. To solve this issue, a VU- and ROCOF-based HID has been developed; it only
detects islanding when both the VU and ROCOF are higher than a predetermined thresh-
old [4]. Arif et al. explored a deep-leaning-based online hybrid detection technique [20].

Table 2. Recent Literature Review: Islanding Detection Methods and Characteristics.

S. No. Paper Detection
Duration

System
Topology Technique

Non-
Detection

Zone (NDZ)
Pros and Cons

1. Jang and Kim
(2004) [6] 53 ms

Multiple-
inverter-based
DER (IBDER)

Voltage
unbalance Large Simple and fast

2.
Meshram and

Kumar
(2020) [8]

0.01 s Multiple
IBDER THD More NDZ is not zero

3. Raza et al.
(2015) [9] 200 ms Multiple

IBDER ROCOFORP Negligible -
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Table 2. Cont.

S. No. Paper Detection
Duration

System
Topology Technique

Non-
Detection

Zone (NDZ)
Pros and Cons

4. Bharti et al.
(2021) [19] 4 ms ≤ t ≤ 2 s Multiple

IBDER
Over/under

voltage Large -

5. Reddy et al.
(2020) [21] 32 ms Multiple

IBDER ROCOFOROP Zero It perfectly detects
islanding

6. Shrestha et al.
(2019) [22] 0.03 s Multiple IBDER Over/Under

voltage Large -

7. Abyaz et al.
(2019) [23] ≤1 s Single

IBDER ROCOF - Dependent on system
inertia

8. Somalwar et al.
(2020) [24] ≤2 s Multiple

IBDER PJD - Simple and fast detection

9. Naraghipour et al.
(2020) [25] 0.1 s Multiple IBDER ROCOFORP NDZ is not

equal to zero -

11. Barkat et al.
(2020) [11] <100 ms Single

IBDER ROCOF Small Simple and fast detection

12. Somalwar et al.
(2020) [24] 0.11 s Multiple

IBDER AFD Massive

The simplicity of AFD’s
implementation in

inverters with
microcontrollers is a

benefit

13. Barkat et al.
(2020) [11] - Multiple

IBDER AFD Greater Wider Non-Detection
Zone (NDZ)

14. Bharti et al.
(2021) [19] ≤2 s Multiple

IBDER

Active
Frequency Drift

(AFD)
Greater

It is impossible to
identify islanding under
balanced loading. It only
detects islanding under

resistive loads

15. Gottapu et al.
(2022) [26] - Single IBDER (SFS) Smallest Negligible NDZ.

16. Wang et al.
(2020) [17] 135 ms Single IBDER

Sandia
Frequency Shift
Method (SFS)

-
There are still issues with
network reliability and

power quality

17. Gavinda and Jena
(2019) [27] 0.18 s Single DG

Reactive
PowerInjection

method
-

Rapid detection,
simplicity of use, and

many inverters

18. Mohanty et al.
(2023) [15] ≤0.5 s

Multiple
iverters based

DG

Slip Mode
Frequency Shift

Method
(SMFS)

Wider or
fewer

Decent ID strategy with
slightly NDZ

19. Kumar (2021) [28]
longest time
for islanding

detection

Single
inverter-based

DG

IM (Impedance
measurement) Negligible 1. Harmonic generation

2. It is simple and affordable.

20.
Gaurav and

Agnihotri (2021)
[29]

≤2 s Multiple DG
wind & PV

D & Q axis
injection - Detection rate is very

fast.

21. Nikolovski et al.
(2020) [16] 0.2 s

Multiple
inverters
based DG

Sandia Voltage
Shift Method

(SVS)
Least

Low NDZ,
straightforward, and

affordable.
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3. Conclusions

In summary, passive systems, which rely on grid characteristics, are cost-effective
but may struggle with load variations and have larger non-detection zones, while active
methods can impact power quality but offer faster identification. Hybrid approaches aim
to improve accuracy and reduce non-detection zones by combining active and passive
techniques. Among hybrid approaches, the most desirable methodology balances accuracy
and computational efficiency. It combines active power and voltage shift analyses with
ROCOV (Rate of Change of Voltage) analyses. In contrast, single-parameter techniques are
surpassed by the HID (Harmonic Impedance-based Discrimination) methodology, which
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utilizes voltage imbalance and ROCOF (Rate of Change of Frequency) thresholds. The
choice of approach should consider the study’s objectives, system characteristics, and any
specific challenges. A thorough review of the literature is necessary. Overall, a hybrid
method holds promise for developing a dependable islanding detection system that ensures
the secure integration of distributed generation.
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