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Abstract: Voltage instability is a serious condition that can occur in a power system. An imbalance in
reactive power, inadequate utilization of voltage control devices, loss of a component or an abrupt
rise in load demand can cause this entire disturbance which leads a system to blackout, either partial
or complete. In order to avoid the condition of voltage collapse, we need to predict the state of buses
in the system so that we can prevent the occurrence of major outages. This research puts forward
two methods for voltage collapse prediction. The first one is to compute a new line stability index
(NLSI_1) through an artificial neural network, and the other one is to present a normalized power
change index (NPCI) for the prediction. These indices are applied and examined on the IEEE-14 bus
system; they check the state of the buses and tell us about the stability of the system. A detailed
methodology and explanation are given in the following sections. According to the neural network
outcomes, the normalized power change index (NPCI) proves to be more accurate than NLSI_1 for
the test system.
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1. Introduction

Existing electrical power systems face challenges due to the rising demand for electric-
ity and limitations in adding new infrastructure like generation units and transmission line
capacity. These limitations are a result of operational and economic constraints. The dy-
namic nature of power demand poses a risk of voltage collapse within electrical networks.
When a line outage happens, the power flow is redistributed to other lines, potentially
causing overload and triggering cascaded outages. These sudden outages can lead to a
chain reaction, resulting in a widespread blackout in the system [1].

Voltage collapse refers to the instability experienced by a heavily loaded electrical
power system, resulting in a decline in voltages and potentially leading to a blackout.
This phenomenon is primarily associated with the reactive power limitations of the power
system. However, in a practical power system, voltage instability is influenced by several
other factors, including the transmission capacity of the network and limitations of the
generator reactive power. Voltage stability entails maintaining a system’s voltage in a
manner that allows for an increase in load admittance, thereby increasing both the load
power and controllability of both the power and voltage. It is the responsibility of the
utility to ensure voltage stability within the power system network.

The voltage collapse issue holds importance as it directly impacts the security and
reliability of the power system. The diagnosis of instability and the continuous monitoring
of power system performance under various operating conditions are crucial aspects within
the network. Given that voltage stability is closely tied to system load and transmission
line parameters, voltage indices have become valuable tools for power system operators
in monitoring voltage stability. These indices can be employed for both online and offline
tracking of the power system network. By keeping track of these indices, the operators can
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be made aware of the states of buses and the condition of the power system before any
mishaps, meaning they can take actions to prevent such occurrences. One effective approach
involves utilizing neural networks to predict stability indices and prevent voltage collapse.

2. Background

The task of overseeing and controlling power systems has become increasingly challeng-
ing due to increasing demand, and maintaining a reliable power system over an extended
period is crucial. The examination of voltage stability encompasses both stable and changing
aspects and researchers have employed various approaches to investigate this phenomenon.
The steady-state approach utilizes the steady-state model in an analysis, resembling a power
flux model or a simplified dynamic model based on a steady-state operation.

The Q–V curve is a commonly used method for assessing voltage stability [2]. It
focuses on how machine voltages react and adjust when reactive power is injected. They
are widely employed by utilities to estimate the risk of voltage collapse, thereby ensuring
system stability.

The evaluation of voltage security heavily relies on the active power–voltage curve,
commonly known as the P–V curve, which is widely recognized as the primary method
in use. It calculates the distance in megawatts (MW) between the operating point and the
critical voltage.

The Modal or Eigen value analysis method [3] serves the purpose of identifying the
smallest eigenvalues and their corresponding eigenvectors from the load flow solution by
examining the reduced Jacobian matrix. These eigenvalues provide a relative indication of
the closeness to voltage instability and are associated with modes of voltage and reactive
power variation.

Voltage stability indices are crucial for understanding how electric power systems
behave. These indices include a line stability index (Lmn), fast voltage stability index
(FVSI), line stability factor (LQP), and line voltage stability index (LVSI).

A combination of the Lmn and FVSI gives a new line stability index whose value lies
between zero and one [4]. It has been seen that the NLSI performs online stability analysis
faster than the previous methods discussed.

NLSI_1 =
4Qr

|Vs|2

[
(|Z|)2

X
σ− X

sin2(θ− δ)
(σ− 1)

]
≤ 1 (1)

The proposed NPCI (normalized power change index) is compared to known grid
voltage stability indices (Lmn, FV SI, LQP, NLSI, and VSLI) under various operating
scenarios within the system. All line voltage stability indices are based on the same
theoretical basis, differing only in the assumptions used in each index. The NPCI has
been proposed to predict the risk of voltage dips and stresses in transmission lines. The
NLSI only takes the values of the reactive power, so we have designed a new index that
gives the best result. We have designed the new index of the system considering all those
parameters that contribute to voltage collapse, with the NPCI being one of them. The NPCI
takes the reactive power by also considering the active power in collapsing to prevent all
unnecessary turnings of the system.

In contrast to the indices mentioned above, the proposed method considers all sensitive
assumptions affecting the accurate diagnosis of collapse problems in order to accurately
predict stress instabilities.

Sending NPCI =
(sending P−Pmin)

(P max − Pmin)
× (sendingV−Vmin)

(V max −Vmin)
× (sending Q−Qmin)

(Q max −Qmin)
(2)

Receiving NPCI =
(receiving P−Pmin)

(P max − Pmin)
× (receivingV−Vmin)

(V max −Vmin)
× (receiving Q−Qmin)

(Q max −Qmin)
(3)
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3. Methodology

The methodology is based on voltage stability indices, NLSI_1, and the NPCI. The
indices are predicted by forming a neural network. An online collapse prediction model
was developed, and the results of the superior index have been shown.

3.1. System Modelling

The test system that is taken for the computation of the voltage stability indicator is the
IEEE-14 bus system. The system has been modeled on MATLAB’s Simulink environment.
The system values such as bus and generator voltages, power rating of the generators, and
line reactance and impedance are set according to the data given online. After modeling
the system, it is subjected to load flow to compute power ratings at load buses. If the results
of the load flow show no errors this means the system is modeled correctly.

3.2. Nlsi Calculation

For the voltage collapse prediction using an ANN, we calculated the stability index
for both, i.e., the base case and contingency case. NLSI_1 is a voltage stability indicator
that falls within the range of zero to one. If the value is close to zero then the bus will be
considered stable; if the value is close to one, then the bus will be considered as a critical
bus upon which the voltage can collapse [5]. We calculated the stability index for the base
case when the system was running under normal operating conditions as well as for the
contingency case, where the system was applied to a reactive power loading, which meant
that we changed the reactive power of the buses to check whether the voltage collapse had
occurred on the system or not.

3.3. Artificial Neural Network

We used the ANN approach that was carried on the MATLAB neural toolbox. This
approach is based on the multilayer perceptron feed-forward neural network whose inputs
are the variables of NLSI_1.

3.4. Generating and Training of Input Data

MLPNN, which stands for Multilayer Perceptron Neural Network, is composed of
a minimum of three layers: an input layer, one or more hidden layers, and an output
layer. The input layer has 1 neuron, the hidden has 5, and the output layer has 1. Our
training was successful with 5 neurons, so we did not need to increase the hidden layers
of neurons. Twenty input output data sets were selected for the base and contingency
cases. In the context of this paper, the inputs for the MLPNN were chosen based on the
necessary variables for calculating NLSI_1. These are the reactive power flows in the
lines (q), sending-end voltage (vs), line reactance (x), transmission line angle (θ)), delta
(δ), and switching function (σ). In the MATLAB neural network toolbox, the min and
max values of the total input data are taken for the range of training. Activation functions
for the network are used, such as transig, logsig, and purelin. The maximum limit of the
network-training iteration process is set as 1000 epochs (iterations) and the stopping criteria
limit or threshold of the network is set as 1 × 10−12. The next step is the transformation
of all these inputs into a single input, then the data set of these inputs is placed in the
neural network by applying the Levenberg–Marquardt algorithm. After training of the
network, we checked the performance and regression plots. The value of the regression
plots must be close to 1—that indicates our model is trained perfectly. After the testing of
the inputs, the values for the base case come out close to zero, and for the contingency case
the increment in the reactive power for the NSLO buses being close to one indicates that
a voltage collapse has occurred on the system. The difference between the actual values
(i.e., from the NSLI calculations) and predicted values through use of the ANN for both the
base and contingency case is the smallest, meaning the neural network seems successful in
the prediction of voltage collapse.
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3.5. Npci Calculation

Here we carried out the voltage collapse prediction for both the base and contingency
cases on the software python version 3.9.7. The NPCI is also a voltage stability indicator
whose values lie between zero and one. For the prediction of voltage collapse, first we
have to install the following libraries in the python environment pandas: NumPy and
pip. The initial step involves data collection, where the inputs for computing the NPCI are
chosen based on the necessary variables. These variables send and receive active power
and reactive power, as well as send and receive end voltages. We imported this simple data
file that contained the variables (Ps, Pr, Qs, Qr, Vs, Vr) into the pandas data frame in python.
After that, we scaled the input data using Scaler and split the data into input and target
variables (NPCI sending and receiving). The input layer is defined implicitly by specifying
the input shape parameter in the first Dense layer. The input shape corresponds to the
shape of the input data (X_train_scaled), which determines the number of input features.

The code snippet includes 2 hidden layers with 64 units each. These layers are defined
using the Dense layer with the ‘relu’ activation function. The output of each hidden layer
serves as the input for the subsequent layer and the output layer is a single Dense layer
with 1 unit. It does not have an activation function specified, which means it will output
the raw predicted values. The code assumes the training data (X_train_scaled and y_train)
and the new data (new_data_scaled) have been appropriately preprocessed and loaded
before training and prediction. Then, we normalized this input data and built ANN model
for sending and receiving the NPCI. We evaluated these values from our data file, and
this gave us the NPCI sending and receiving figures with the prediction libraries, which
were tensor flow and sk learn. The difference between the actual and predicted value was
minimal in the base case prediction for the NCPI, as NCPI came out close to zero, indicating
the stability of the system. For the contingency case analysis, the NPCI values were greater
than 0 but not 1 because we performed NPCI calculations on the existing system that was
used for NLSI_1, since we only increased the load reactive power for the NLSI contingency
case prediction. So, we increased the system parameters like voltage, reactive power, and
active power and observed that when any of these parameters increased to their maximum
range, the greater the chance of the system collapsing and entering a critical state.

4. Results and Discussion

The NLSI_1 and NPCI values were calculated and predicted using the artificial neural
network. The base and contingency cases were both evaluated. The results displayed show
the proposed normalized power change index (NPCI).

The NPCI base case was computed as seen in Table 1. The index values were close to
0, showing that the buses were stable. When the system is running on normal operating
conditions, the system is stated as stable, as seen from the NPCI computations in Table 1.

Our first contingency test index values were greater than 0 but not close to 1. In Table 2,
the values of the NPCI are shown as being close to 1. Since the NPCI takes all system
parameters that can be responsible for collapse in a power system network and not only
specific parameters, it is a better approach to predict collapse condition in power system
networks. Figures 1 and 2 show the base case differences, while Figures 3 and 4 show the
improved contingency case differences.

When the system is running on normal operating conditions, the system is stated as
stable, as seen from the NPCI computations in Table 1.

Figures 1–4 show the scatter plots used to visualize the differences between the
predicted NPCI values and the actual values. The x-axis represents the data points, and the
y-axis represents the differences.

The red dashed line indicates zero difference, with the predicted values matching the
actual values. The improved contingency case shows that the actual and predicted values
have almost zero differences.
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Table 1. Base case values of NPCI.

From Bus To Bus Calculated
Sending

Predicted
Sending

Calculated
Receiving

Predicted
Receiving

1 5 0 0.033215 0.275522 0.18255
2 5 0 0.0164462 0.275522 0.29877
4 5 0.044304 0.045607 0.275522 0.27595
13 14 0 0.00142995 0 0.0016425
12 13 0 0.00191158 0 0
6 12 0 0.00142239 0 0
3 4 0 0 0.044275 0.0555701
4 9 0.044304 0.0422399 0 0
7 9 0.028682 0.02878 0 0.00185
6 13 0 0 0 0
1 2 0 0 0 0
2 3 0 0.0018936 0 0.0018463
2 4 0 0.0018936 0.044275 0.037843
5 6 0.275522 0.275954 0 0
4 7 0.044304 0.043619 0.028682 0.028975
7 8 0.028682 0.0303357 0.013307 0.0830385
9 10 0 0 0 0
10 11 0 0.1171 0.086351 0.0837277
9 14 0 0 0 0
6 11 0 0 0.086497 0.0828559

Table 2. Improved contingency case values of NPCI.

From Bus To Bus Calculated
Sending

Predicted
Sending

Calculated
Receiving

Predicted
Receiving

13 14 0.785085 0.806177 0.985 1.3514888
12 13 0.995789 4.517126 0 1.0948209
14 9 0.7346242 0.733726 0.81732 0.8176089
12 6 0.7063413 0.7074859 0.31683 0.31757724
13 6 0.693775 0.696058 0.532027 0.5295101
11 6 0.868084 0.730491 0.678266 0.5764689
11 10 0.8732788 0.875844 0.749202 0.7508737
10 9 0 0.000868093 0.9931677 0.99291444
4 9 0.9736615 0.9751088 0.4025799 0.40267083
5 6 0.9732335 0.9830483 0.7044823 0.7050457
5 4 0.7271405 0.7203176 0.4473327 0.4479278
3 4 0 0.00136608 0.9088529 0.9108111
1 5 0.298459 0.3029285 0.6730873 0.6727908
1 2 0.624812 0.6324194 0.36009996 0.36163014
2 5 0.9448474 0.9442915 0.95962114 0.9601153
2 4 0.47112109 0.57991874 0.87669542 0.85413694
2 3 0.7815849 0.78208035 0.24324533 0.24412082



Eng. Proc. 2023, 46, 24 6 of 7
Eng. Proc. 2023, 46, x FOR PEER REVIEW  6  of  8 
 

 

 

Figure 1. Differences for NPCI sending base case. 

 

Figure 2. Differences for NPCI receiving base case. 

 

Figure 3. Differences for NPCI (sending) improved contingency case. 

Figure 1. Differences for NPCI sending base case.

Eng. Proc. 2023, 46, x FOR PEER REVIEW  6  of  8 
 

 

 

Figure 1. Differences for NPCI sending base case. 

 

Figure 2. Differences for NPCI receiving base case. 

 

Figure 3. Differences for NPCI (sending) improved contingency case. 

Figure 2. Differences for NPCI receiving base case.

Eng. Proc. 2023, 46, x FOR PEER REVIEW  6  of  8 
 

 

 

Figure 1. Differences for NPCI sending base case. 

 

Figure 2. Differences for NPCI receiving base case. 

 

Figure 3. Differences for NPCI (sending) improved contingency case. 
Figure 3. Differences for NPCI (sending) improved contingency case.



Eng. Proc. 2023, 46, 24 7 of 7
Eng. Proc. 2023, 46, x FOR PEER REVIEW  7  of  8 
 

 

 

Figure 4. Differences for NPCI (receiving) improved contingency case. 

The red dashed line indicates zero difference, with the predicted values matching the 

actual values. The improved contingency case shows that the actual and predicted values 

have almost zero differences. 

5. Conclusions 

This  research presented an overview of voltage  stability analysis  techniques. Two 

indices, new line stability (NLSI_1) and the normalized power change index (NPCI), were 

employed to predict the voltage collapse in an IEEE-14 bus system. A neural network was 

developed and  trained  for a  successful network. The  results and performance of both 

indices  were  discussed.  The  results  suggest  that  the  NPCI  is  a  better  approach  as 

compared  to  NLSI_1  in  predicting  voltage  collapse  because  it  takes  all  the  system 

parameters  that  could  cause  collapse  in  the  system, while NLSI_1  only  takes  specific 

parameters. 

Author Contributions: A.A. and A.I. have performed the modelling and simulation. A.A. and A.I. 

have  performed  the  calculations  of  both  the  indices.  T.K.  has  implemented  the  framework  for 

artificial neural network. A.U. have performed the project report writing and formatting work. A.M. 

conducted a comprehensive literature review and played a pivotal role in shaping the idea behind 

this study. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable.   

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Shakerighadi, B.; Aminifar, F.; Afsharnia, S. Power systems wide-area voltage stability assessment considering dissimilar load 

variations and credible contingencies. J. Mod. Power Syst. Clean Energy 2019, 7, 78–87. 

2. Ibrahim, M.H.; Jasim, A.H. Voltage Collapse Prediction of IEEE 30-Bus system. Tikrit J. Eng. Sci. 2021, 28, 98–112. 

3. Mokred, S.; Wang, Y.; Chen, T. A novel collapse prediction  index  for voltage stability analysis and contingency ranking  in 

power systems. Prot. Control. Mod. Power Syst. 2023, 8, 7. 

4. Samuel, I.A.; Katende, J.; Awosope, C.O.; Awelewa, A.A. Awosope Claudius Prediction of Voltage Collapse in Electrical Power 

System Networks using a New Voltage Stability Index. Int. J. Appl. Eng. Res. 2017, 12, 190–199. 

5. Isaac, S.; Adebola, S.; Ayokunle, A.; Katende, J.; Claudius, A. Awosope Claudius Voltage collapse prediction using artificial 

neural network. Int. J. Electr. Comput. Eng. 2021, 11, 124–132. 

Figure 4. Differences for NPCI (receiving) improved contingency case.

5. Conclusions

This research presented an overview of voltage stability analysis techniques. Two
indices, new line stability (NLSI_1) and the normalized power change index (NPCI), were
employed to predict the voltage collapse in an IEEE-14 bus system. A neural network
was developed and trained for a successful network. The results and performance of both
indices were discussed. The results suggest that the NPCI is a better approach as compared
to NLSI_1 in predicting voltage collapse because it takes all the system parameters that
could cause collapse in the system, while NLSI_1 only takes specific parameters.

Author Contributions: A.A. and A.I. have performed the modelling and simulation. A.A. and
A.I. have performed the calculations of both the indices. T.K. has implemented the framework for
artificial neural network. A.U. have performed the project report writing and formatting work. A.M.
conducted a comprehensive literature review and played a pivotal role in shaping the idea behind
this study. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shakerighadi, B.; Aminifar, F.; Afsharnia, S. Power systems wide-area voltage stability assessment considering dissimilar load

variations and credible contingencies. J. Mod. Power Syst. Clean Energy 2019, 7, 78–87. [CrossRef]
2. Ibrahim, M.H.; Jasim, A.H. Voltage Collapse Prediction of IEEE 30-Bus system. Tikrit J. Eng. Sci. 2021, 28, 98–112. [CrossRef]
3. Mokred, S.; Wang, Y.; Chen, T. A novel collapse prediction index for voltage stability analysis and contingency ranking in power

systems. Prot. Control. Mod. Power Syst. 2023, 8, 7. [CrossRef]
4. Samuel, I.A.; Katende, J.; Awosope, C.O.; Awelewa, A.A. Awosope Claudius Prediction of Voltage Collapse in Electrical Power

System Networks using a New Voltage Stability Index. Int. J. Appl. Eng. Res. 2017, 12, 190–199.
5. Isaac, S.; Adebola, S.; Ayokunle, A.; Katende, J.; Claudius, A. Awosope Claudius Voltage collapse prediction using artificial neural

network. Int. J. Electr. Comput. Eng. 2021, 11, 124–132.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s40565-018-0420-6
https://doi.org/10.25130/tjes.28.1.10
https://doi.org/10.1186/s41601-023-00279-w

	Introduction 
	Background 
	Methodology 
	System Modelling 
	Nlsi Calculation 
	Artificial Neural Network 
	Generating and Training of Input Data 
	Npci Calculation 

	Results and Discussion 
	Conclusions 
	References

