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Abstract: Solar irradiance, the power of sunlight received on a given surface area during a specific
time, is crucial in determining the efficiency and performance of solar power systems, as it directly
influences the electricity units generated by photovoltaic (PV) cells. In recent years, deep learning
and machine learning techniques have been leveraged to enhance the accuracy of solar adsorption
and wind power forecasting. In this context, this study presents a comparative study of various
deep learning models for very short term solar irradiance forecasting, aiming to find the most
effective model for this specific purpose for our local city Karachi. The key findings indicate that the
LSTM model outperforms the other architectures, achieving the highest R-squared value and the
lowest RMSE. These results emphasize the importance of accurate forecasting models in optimizing
renewable energy generation and grid management and their potential applications in various sectors.

Keywords: solar irradiance; comparative analysis; deep learning; time series forecasting; karachi
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1. Introduction

The increasing awareness of the need to find alternative means of electric power
generation without depleting the Earth’s natural resources has led to the rise of alternative
energy [1]. Alternative energy encompasses various fuel sources that do not rely on fossil
fuels, some of which may not necessarily be renewable. Renewable energy sources, a subset
of alternative energy, exhibit a relatively lower carbon footprint [2]. One such renewable
energy source is solar power, which harnesses sunlight to generate electricity, serving as a
clean and sustainable alternative to finite fossil fuels [3].

Photovoltaic (PV) cells play a key role in generating solar power by converting sunlight
into electricity. Solar irradiance, the power of sunlight received on a given surface area dur-
ing a specific time, is crucial in determining the efficiency and performance of solar power
systems [2,3]. Accurate forecasting of solar irradiance holds great significance in various
applications; it aids in optimizing the use of solar energy and managing its integration into
power grids [4]. In recent years, deep learning and machine learning techniques have been
leveraged to enhance the accuracy of solar irradiance forecasting [5-8]. Advanced models
such as deep recurrent neural networks (DRNNs) and multilayer perceptron regression
(MLP) have resulted in significant advancements in forecasting accuracy [9,10].

In this context, our research presents a comparative study of various deep learning
models—recurrent neural network (RNN), gated recurrent unit (GRU), long short-term
memory (LSTM), and temporal convolution network (TCN)—for solar irradiance forecast-
ing, aiming to identify the most effective model for this specific purpose. Notably, our
work involves conducting a comparative analysis of these models on the Karachi dataset.
Enhanced relevance and applicability are held by our findings when a locally specific
dataset from the city of Karachi is focused on.
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2. Literature Review

Solar irradiance forecasting is one of the most widely studied fields [11]. In [12],
a combination of wavelet transforms and neural networks for accurate solar irradiance
prediction were utilized, and multiple hybrid models are employed for this task; in [12], the
LSTM, GRU, and GRU-Attention models were employed, which gave the result of 5.33%.

2.1. Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a powerful neural network architecture that
incorporates the memory of past data points through recurrence. RNNs are particularly
effective for time series forecasting [5]. In summary, an RNN uses its hidden layer to
capture and remember information from previous data points, making it effective for tasks
involving sequences. The internal cell structure of RNN is shown in Figure 1 below.
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Figure 1. Recurrent neural network (RNN) internal cell structure.
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2.2. Gated Recurrent Unit (GRU)

One challenge with recurrent neural networks (RNNs) is that the recurrence of data
points can introduce errors in the computation of weights and biases. The (GRU) is a
specialized type of RNN designed for sequential data [6]. It tries to solve the issue of
exploding and vanishing gradients by incorporating two gate mechanisms: the first is
the update gate (z;), and the second is the reset gate (r;). Using these gates, it remembers
relevant information that is needed and discards the rest The internal cell structure of GRU
is shown in Figure 2 below.

GRU

Figure 2. Gated recurrent unit (GRU) internal cell structure.

2.3. Long Short-Term Memory Networks (LSTMs)

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network
(RNN) architecture that has gained popularity for their ability to learn long-term depen-
dencies in sequential data, making them particularly well suited for complex time series
forecasting and natural language processing tasks [8] (pp. 5929-5955). The LSTM archi-
tecture is a more complex form of RNNs as compared to GRUs, and that is why they tend
to remember more complex information. They consist of forget gate f;, candidate layer
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Cs, input gate i;, output gate o;, hidden state (represented by letter /1) and memory state
(represented by letter c). The internal cell structure of LSTM is shown in Figure 3 below.
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Figure 3. Long short-term memory (LSTM) internal cell structure.

2.4. Temporal Convolution Network (TCN)

A temporal convolutional network (TCN) is an advanced type of neural architecture
that has evolved from the 1-D convolutional neural network (CNN) [13].

This method uses stacked convolutions with causal padding, dilation, and residual
or skip connections to obtain a much larger receptive field. This TCN architecture has
been shown to outperform traditional RNNs and vanilla CNNs in numerous tasks such
as segmentation of some action and network anomaly detection. TCN has demonstrated
superiority over LSTM in several domains such as traffic prediction, audio processing,
machine translation, and human motion detection [5,9-11]. The internal cell structure of
TCN is shown in Figure 4 below.
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Figure 4. Overall complete TCN model architecture.

3. Methodology

The methodology section outlines the experimental setup, including details about the
dataset, model architectures, and parameters. It also describes the experiment setup and
training process for each model.

3.1. Dataset

The Karachi dataset of 2019, acquired from the NSRDB, provides solar irradiance
readings at a time resolution of 15 min. The dataset covers a period of one year, consisting
of 35,040 samples. For experimental purposes, the dataset we used was split into training
and testing sets. And the last ten days of data were used exclusively for testing, while
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the remaining dataset served as the training data. Notably, no portion of the dataset was
allocated for validation.

3.2. Model Architectures and Parameters

The simple RNN model features a single hidden layer with 64 neurons, a default tanh
activation function, a sigmoid activation for the dense layer, and the AdamW optimizer. The
GRU model, also utilizing a default tanh activation function with a dense layer featuring
sigmoid activation and the AdamW optimizer, comprises two hidden layers with a distribu-
tion of 2:32 + 32 neurons. Similarly, the LSTM model employs a sigmoid activation function
with a dense layer, an AdamW optimizer, and two hidden layers with a distribution of
2:64 + 64 neurons. The TCN model incorporates a ReLU activation function, with sigmoid
activation for the dense layer, the AdamW optimizer, a stack of 2 layers with a kernel size
of 15 and 15 no. of filters, causal padding, batch normalization, no skip connection in
our selected architecture, and dilation layers with dilation factors of 1, 2, 4, and 8. The
simple RNN, GRU Model, LSTM Model, and TCN models have 4737, 10,401, 51,777, and
53,776 total parameters, respectively, making TCN the largest model among them all.

3.3. Experiment Setup

The experiment was conducted using a window length of 3 days, and all models were
trained using a fixed learning rate of 0.001, except for the TCN, which had a learning rate of
0.01 and a weight decay factor equal to 0.001. The loss metric applied consistently across all
models was the mean absolute error (MAE), while the metric we used for evaluation was
the root mean square error (RMSE). The training process involved iteratively optimizing
model parameters over a predetermined number of epochs. All models were trained for
500 epochs.

3.4. Results and Discussion

Figure 5 shows the models’ prediction plots, illustrating their performance and dif-
ferences in the context of very short term solar irradiance forecasting. These plots clearly
demonstrate the superiority in terms of forecasting of the LSTM model when comparing it
to the other neural network models.
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Figure 5. RNN, GRU, LSTM, and TCN models’ prediction plots with ground truth.
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The training and inference time taken by each model are shown in Figure 6, which
shows that RNNs took the least amount of time to train but also took the most time for
inference, and for TCN, the opposite happened: it took the most amount of time to train,

but during inference, it was the fastest among them all:

Model Training Time Model Inference Time

Inference Time (seconds)

Model Model

Figure 6. Bar plots showing the training time taken by models to train for 500 epochs (left) and the
inference time taken by models for forecasting the last 10 days (right).

After training the models on the entire year’s data, excluding the last 10 days desig-
nated as the test set, the model’s accuracy was assessed. The LSTM model achieved the
highest R-squared value equal to 0.993406, indicating it outperformed the others. The GRU
model ranked second with an R-squared value equal to 0.992509, followed by the TCN
model with an R-squared value equal to 0.992405 and the simple RNN model with an
R-squared value equal to 0.991935.

All model’s RMSE values are shown in Table 1:

Table 1. RMSE Values of Models.

Model RMSE Value
LSTM 0.020051
GRU 0.021371
TCN 0.021519
RNN 0.022175

4. Conclusions

This study presents a comparative analysis of various neural network models for very
short term solar irradiance and wind power forecasting using the Karachi dataset. The key
findings indicate that the LSTM model outperforms the other models, achieving the highest
and lowest R-squared value and RMSE value, respectively. These results emphasize the
importance of accurate forecasting models in optimizing renewable energy generation and
grid management and their potential applications in various sectors.

Future Work

Future work could explore feature extraction techniques like time series decomposition
to further enhance forecasting model performance. Additionally, the exploration of liquid
neural networks, which aim to achieve powerful predictions with fewer neurons and
connections inspired by C. Elegans, shows promise. These approaches have the potential
to offer more efficient and effective forecasting models.

Examining these techniques and alternative architectures can expand and enhance the
proposed forecasting models” applicability and generalizability.
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