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Abstract: Distribution system parameter estimation plays a vital role in the overall control and
monitoring of the network. A conventional technique to obtain information about the system
voltages and line currents involves iterative load flow procedures. Such methods sometimes do not
converge due to the limited number of available measurements. This paper proposes a simulated
data-driven approach for estimating feeder loadings under various operating scenarios of the IEEE
15 bus system. A deep neural network using the MATLAB nntool is implemented, and promising
results are presented.
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1. Introduction

Distribution systems are the largest sector of any power system. A planned and
effective distribution network is the key to coping with the ever-increasing demand for
domestic, industrial, and commercial load. The load flow information can be used for
analyzing the normal operating mode, contingency analysis, and others [1].

To operate the distribution system in an efficient manner, information regarding the
operational parameters, such as bus voltages, line currents, and system losses, is important.
From the perspective of feeder designing, the line current is a key parameter to know.
Conventionally, line currents are obtained by performing load flow analysis with different
algorithms. Load flow analysis techniques use iterative methods, such as the forward–
backward sweep method, and others. These techniques are time consuming, and sometimes
solutions do not converge [2].

A neural network (NN) is a powerful artificial intelligence tool to overcome issues
with conventional methods of load flow. They are well known for their properties of
learning patterns and obtaining generalization from the provided data. A dataset serves
as the backbone for an NN; therefore, we have used MATLAB coding for generating the
required dataset with the load variation as the input and the line current of the network
as the output. The deep learning model has been developed, and to check the robustness
of the model, unseen data have been tested on the model. The key contributions of this
research are:

• The development of a large dataset comprising possible loading scenarios in a distri-
bution network.

• The development of a deep-neural-network-based model for line current estimation.

This work is organized as follows: Section 2 discusses the relevant work as the
literature review. Section 3 describes the detailed methodology for preparing the dataset
and for data pre-processing for neural network training. Section 4 explains the experimental
procedure and the results, and, finally, Section 5 provides a conclusion to this work, with
future aspects to explore.
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2. Literature Review

Distribution system parameters estimation is an extensive area of research due to the
realization of the smart grid, the integration of electric vehicles, and installing renewable-
based distributed generation in the power grid.

Distribution systems, unlike the transmission system, have a smaller X/R ratio and are
weakly meshed; therefore, they cannot rely upon the Gauss–Seidel or the Newton–Raphson
methods of load flow because of ineffective and ill convergence [3]. Alternatively, the
backward–forward sweep method is ideal for the distribution system.

In the field of power system state estimation, some authors have presented exceptional
results using deep neural networks, like false data detection, in a power system, such as
the voltage stability estimation stated in [4,5]. The distribution system voltage magnitude,
phase angle, and line currents have been predicted by the author using a deep neural
network [6].

Line currents are important to calculate because several control and monitoring actions
are carried out using this information. Several articles have shown the importance of line
current estimation using artificial neural networks. In [7], the author has used current
signals for the purpose of fault localization. Researchers have calculated the short circuit
current at various locations in the distribution network using neural networks [8].

A neural network has the capability to learn and generalize the dataset without being
explicitly programmed. The benefits of using an ANN for feeder current prediction is
that the well-trained model gives results quickly, robustly, and accurately. This significant
reduction in real-time computational time makes DNN feasible for real-time operations in
a distribution network.

3. Methodology

This section describes the procedure of dataset development and noise addition in
detail. An IEEE 15 bus distribution network has been considered for our experiment. The
system characteristics were obtained from [9]. It has 14 load buses and a slack bus. The
input–output relationship is developed between the loads and line currents, respectively.
The IEEE 15 bus distribution system is shown in Figure 1.
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Figure 1. IEEE 15 bus distribution system with meter locations.

3.1. Dataset

Dataset generation is key to developing any deep learning model. For this purpose, we
have developed a detailed dataset comprising 91,503 samples. These samples are obtained
through MATLAB R2020a programming by considering a variety of operating scenarios in
the network. The data generation procedure is visualized in Figure 2.
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Figure 2. Data generation procedure.

The distribution system meters are not installed at each bus due to economic con-
straints. Therefore, considering this view, we have considered meter placement at buses 3,
5, 7, 8, 10, 13, 14, and 15 only. Therefore, we have 16 inputs (8 load active powers and 8 load
reactive powers) and 14 outputs (magnitude of line currents). In all loading scenarios of the
system, the load is varied from 0% to 160% of the rated loading conditions [10]. The details
of the operating condition and its contribution to the main dataset are presented in Table 1.

Table 1. Summary of the dataset generation with various scenarios.

Cases of Loading Scenarios No of Samples

1. Variation of PL one by one (step size 0.0625 KW) 28,813
2. Variation of PL simultaneously from light to heavy (step size 0.625%) 257
3. Variation of PL Randomly (any sample from 0.625% variation) 10,000
4. Variation of QL one by one (step size 0.0625 KW) 31,919
5. Variation of QL simultaneously from light to heavy (step size 0.625%) 257
6. Variation of QL Randomly (any sample from 0.625% variation) 10,000
7. Variation of PL and QL simultaneously, light to heavy (step size 0.625%) 257
8. Variation of PL and QL Randomly (any sample from 0.625% variation) 10,000

Total Samples 91,503

3.2. Noise Addition

Metering data always have errors in them due to meter inaccuracies and the commu-
nication channel. In our experiment, the dataset is developed through coding; therefore,
the results are obtained in ideal values. The dataset was subjected to Gaussian noise
(3 × S.D = 2%) to obtain the finalized data for neural network training. The noise addition
procedure in the input data is displayed in Figure 3.
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4. Experimental Procedure and Results

In our experiment, the filtered dataset comprised 91,503 samples, which were then
segregated into two sets for training and for evaluating the robustness of the model,
respectively. Set 1 consists of 91,000 samples, and the rest of the samples were treated
as unseen data. Set 1 was pre-processed and then split as the train, test, and validation
sets, with 80–10–10%, respectively. The furnished dataset was then used for DNN model
training using ‘nntool’ GUI in MATLAB. The experiment was started using a single hidden
layer with neuron ranges (half of the input features, number of inputs). A second hidden
layer was added while keeping the number of neurons in the same range. The sigmoid
activation function in hidden layers and the Lavenberg–Marquardt algorithm for error
reduction were used. The best model was obtained with the configuration i/p-18-16-o/p,
shown in Figure 4.
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Figure 4. Best selected model.

To test the system in a robust way, two random samples, ‘A’ and ‘B’, were provided to
the DNN model one by one. The training and estimation process using the best model is
depicted in Figure 5. The model estimation was compared with the actual value, and the
results are shown in Table 2 from two random samples.
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Table 2. Comparison between actual and predicted values from the best trained model.

Sample 367 Sample 412

Line
Currents

Actual
Values

Predicted
Values

Line
Currents

Actual
Values

Predicted
Values

I 1-2 153.9317 153.2078 I 1-2 160.3199 159.1047

I 2-3 85.5666 85.7791 I 2-3 91.5069 91.1343

I 3-4 41.4923 41.2510 I 3-4 47.5641 47.3722

I 4-5 5.9945 5.9920 I 4-5 6.0101 6.0080

I 2-9 28.2048 27.8327 I 2-9 28.2361 28.0619

I 9-10 9.4128 9.4029 I 9-10 9.4233 9.4198

I 2-6 34.2831 34.0720 I 2-6 34.3215 34.2601

I 6-7 5.9445 5.9477 I 6-7 5.9512 5.9517

I 6-8 18.9076 18.9098 I 6-8 18.9288 18.9273

I 3-11 34.6170 34.1341 I 3-11 34.6866 34.4924

I 11-12 15.5858 15.4256 I 11-12 15.6173 15.5891

I 12-13 6.0290 6.0403 I 12-13 6.0412 6.0422

I 4-14 9.5281 9.5250 I 4-14 9.5531 9.5513

I 4-15 14.6118 14.6195 I 4-15 19.128 19.1235
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5. Conclusions and Future Work

In this paper, a framework has been proposed for distribution system feeder current
prediction based on a large and generalized dataset. A deep-learning-based line current
estimator has been developed, with satisfactory performance at various loading scenarios.
In our experiment, a fixed topology was considered, and this limit will be considered in
our future work. A small distribution system has been tested and it will incorporate a large
network in our future studies.
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