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Abstract: This research paper explores the relationship between different functionalities of aircraft
and investigates the impact of increased air travel on carbon dioxide, nitrous oxide, water vapor,
and hydrocarbon emissions. These emissions contribute to both local airport pollution and global
atmospheric pollution, posing significant environmental challenges. The study aims to minimize
the high maintenance costs associated with aviation engines and to reduce the hazardous emissions
from aircraft engines in order to protect the environment. A genetic algorithm is employed for multi-
objective optimization, generating a set of desirable solutions applicable in real-world scenarios. The
results demonstrate the effectiveness and simplicity of the genetic algorithm in iteratively searching
for optimal solutions. This research provides valuable insights for the research community and paves
the way for further investigations into these critical issues.
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1. Introduction

The rapid growth of worldwide commercial aviation, coupled with increasing envi-
ronmental awareness, has brought attention to the significant issue of airplane emissions.
In particular, the European Union Emissions Trading Scheme has imposed penalties on
airlines exceeding carbon emission limits, highlighting the urgency of addressing emis-
sions. Apart from the environmental impact, pollutant emissions also have the potential
to escalate future aircraft operating expenses. Aircraft engines emit a range of gases, in-
cluding CO2, nitrogen oxide, water vapor, hydrocarbons (HC), and smoke, affecting the
environment in two primary areas: local airport pollution [1] and greenhouse effects in the
atmosphere [2–5].

Previous studies have primarily focused on pollution in the vicinity of airfields, and
the International Civil Aviation Organization (ICAO) has set caps on emissions during
normal landing and takeoff cycles at sea level. However, there is growing recognition of the
greenhouse gases produced during cruise flights, with water vapor, CO2, and NOx [6–9]
being the main contributors. Limiting emissions, such as HC, NOx, smoke [10], and
others, during landing and takeoff cycles is crucial, as per the guidelines of the ICAO. The
indirect greenhouse impact of NOx [11,12] is complex, as its transfer to the stratosphere

Eng. Proc. 2023, 46, 11. https://doi.org/10.3390/engproc2023046011 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023046011
https://doi.org/10.3390/engproc2023046011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-1291-7452
https://doi.org/10.3390/engproc2023046011
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023046011?type=check_update&version=1


Eng. Proc. 2023, 46, 11 2 of 6

can contribute to ozone depletion, while its presence in the upper troposphere may impact
stratospheric ozone and methane production. The influence of water, particularly through
contrails and cirrus formations, varies with the flying altitude, further complicating the
relationship between low altitudes and the aircraft’s greenhouse effect.

In addition to environmental concerns, affordability has become a significant factor in
commercial airplane design. Aircraft and engine manufacturers, as well as airlines, strive
to reduce expenses, particularly the direct operating cost (DOC), to maintain a competitive
edge. Previous studies have explored the environmental impact and lowest possible Direct
Operating Costs (DOC) of long-range airplanes during cruise flights by adjusting the thrust-
to-weight and weight-to-wing-area ratios [13]. However, climate impact models are less
commonly used for comparing different designs.

This research aims to address two key objectives: firstly, to minimize the high main-
tenance costs associated with aviation engines, and secondly, to reduce carbon emissions
to protect the environment while ensuring engine quality, reliability, and adherence to
maintenance schedules. To achieve these objectives, a genetic algorithm will be employed
for multi-objective optimization, generating a set of practical and desirable solutions which
are applicable in real-world environments.

2. Literature Review

M Airplane engine maintenance involves three core processes: Hard Time (HT), On
Condition (OC), and Condition Monitoring (CM). HT establishes regular intervals for main-
tenance tasks, while OC evaluates the engine’s condition through quantitative data analysis
and prompts maintenance when parameters exceed the limits or indicate imminent failure.
CM [14] focuses on monitoring fleet airworthiness and maintenance performance, collect-
ing data throughout the component’s life cycle and allowing for predictive maintenance.
These processes are supported by a comprehensive dependability program that assesses
their efficacy and recommends adjustments to maintenance intervals or procedures.

Cost is a crucial factor in engine maintenance [15] and directly impacts the direct
operating cost (DOC) of an aircraft [16]. Engine performance, design, reliability, fuel costs,
acquisition, and maintenance expenses collectively contribute to the DOC, with mainte-
nance accounting for a significant portion. Engine maintenance costs can be categorized
as on-aircraft and off-aircraft. On-aircraft maintenance covers routine inspections and
services, while off-aircraft maintenance, or shop visits (SVs), involve more extensive and
time-consuming repairs or overhauls to be conducted in an engine shop. Off-aircraft main-
tenance tends to be substantially more expensive than on-aircraft maintenance, making
cost management a critical aspect of engine maintenance.

Time, referring to maintenance time and material procurement lead time, is another
important consideration [17,18]. Maintenance time represents the duration required to
complete specific engine maintenance tasks requested by the client [19]. The material
procurement lead time encompasses the time between issuing an order and receiving the
requested materials. Delays in transportation, customs clearance, and other factors can
extend the lead time. Prolonged engine repair and parts acquisition result in increased air-
craft downtime, leading to higher costs for the client. Therefore, efficient time management
plays a significant role in aviation engine maintenance.

Reliability refers to a system’s ability to perform its intended function satisfactorily
over a specific period and under specified conditions. In the case of aviation engines,
reliability encompasses various factors, including the engine’s reparability after damage.
It can be quantified using the equation R(t) = e−λt, where R(t) represents the possibility
of the equipment functioning as expected over time t; e is the mathematical constant,
approximately equal to 2.7182818; λ is the failure rate (1/MTBF); and t is the indicated
operation time [18].

Figure 1 illustrates the relationship between increased mean time between failures
(MTBF) and improved reliability. Lower maintenance downtime contributes to higher
reliability, which is influenced by factors such as part procurement, lead time, and repair
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time. Frequent failures requiring regular maintenance or repairs indicate low reliability.
Increased reliability can be achieved through well-equipped facilities, qualified staff, appro-
priate tools, and an inventory of spare components and replacement parts. Dependability
plays a crucial role in engine maintenance.
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Emissions: Global warming has become a major concern due to the unregulated
emission of harmful gases by various industries. CO2 emissions are the primary contributor
to global warming. In 2019, global flights produced 915 million tons of CO2, accounting
for 2% of human-caused CO2 emissions and 12% of total CO2 emissions from all modes of
transportation. Long-haul flights, especially those over 1500 km, contribute significantly to
aviation CO2 emissions.

In addition to CO2, aircraft emissions also include water vapor, which accounts for 30%
of the exhaust. Water vapor has a modest direct impact on global warming, but it indirectly
contributes through the formation of contrails. Contrails are formed when water vapor
freezes and forms ice crystals in the cold ambient temperature, leading to the creation of
contrail-induced clouds. These contrails trap infrared rays and have a warming effect three
times greater than CO2 emissions. The overall impact of contrails surpasses the warming
effect of all CO2 emissions released by aircraft since commercial flying began.

Considering the carbon footprint is essential when deciding whether to repair, lease,
or purchase a part, as it involves transportation from various locations worldwide. Further-
more, the carbon emissions associated with repaired and new parts may differ significantly.

Other criteria, such as maintainability, availability, and flexibility/replaceability, can
also be categorized under the aforementioned maintenance considerations. However, for
this study, the key parameters chosen were engine maintenance costs, aircraft downtimes,
quality, and emissions, with dependability, maintainability, and availability falling under
the aircraft downtimes category.

3. Methodology

This research paper proposes the utilization of a genetic algorithm for the multi-
objective optimization of aircraft engine characteristics. Optimization is the process of
maximizing outcomes by improving a system or process. Classical and evolutionary opti-
mization are the two main types, with the latter employing a population-based approach.
In multi-objective optimization, conflicting objectives are considered, resulting in a set of
optimal solutions.

The genetic algorithm, a type of evolutionary algorithm, is employed in this study. It
selects a collection of random solutions, represented as chromosomes, and evolves them
through iterations. Many real-world engineering optimization problems involve multiple
objectives that are often in conflict. Therefore, no single optimal solution can satisfy all
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objectives simultaneously. Trade-offs between objectives require the generation of a set of
solutions to represent the optimal trade-off solutions.

The mathematical formulation of the multi-objective optimization problem is provided
here, including decision variables and objective functions [20]. The decision variables
represent choices related to purchasing, loaning, and repairing engine components. The
objective functions aim to minimize the engine maintenance cost, total lead time, and
engine emissions while maximizing quality. Constraints ensure the selection of at least one
output and maintain the binary nature of decision variables.

In this study, the efficiency of the engine components was evaluated using the follow-
ing scale:

Original Equipment Manufacturer (OEM) = 4
FAA/EASA approved = 3
Civil Aviation Authority Malaysia (CAAM) = 2
Miscellaneous state aviation organizations = 1
Bogus or salvaged part = 0
The mathematical formulation for multi-objective optimization is defined as:

Decision Variables

Xij: Binary variable indicating whether material i is bought for task j (1 if bought,
0 otherwise).

Yij: Binary variable indicating whether material i is loaned for task j (1 if loaned,
0 otherwise).

Zij: Binary variable indicating whether material i is repaired for task j (1 if repaired,
0 otherwise).

Three binary decision variables, Xij, Yij, and Zij, were used. Xij represents a purchase
decision, where 1 denotes buying and 0 denotes not buying the material. Yij represents a
loan decision, where 1 denotes loaning and 0 denotes not loaning the material. Zij represents
a repair decision, where 1 denotes repairing and 0 denotes not repairing the material.

The mathematical model can be implemented using MATLAB or a Python-based
compiler. The researcher can expect to obtain a diverse set of solutions that offer the best
possible results. The mathematical modeling in this study was performed using Python.

Figure 2 illustrates two different visualizations and the implementation of the genetic
algorithm for investigating various functionalities and optimizing performance. These
figures offer insights into the relationships between different parameters and the algorithm’s
effectiveness. It is comparing the minimized engine cost with the minimized total lead
time. The graph was generated using the genetic algorithm, with the parents representing
actual values and the offspring generated by the algorithm. The graph is generated by
the algorithm, with parents representing actual values and offspring generated during the
algorithm’s execution. The genetic algorithm iteratively searches for local minima until it
discovers reduced and optimally minimized values. The algorithm follows four primary
steps: initial population, fitness function evaluation, selection, and crossover/mutation.

Eng. Proc. 2023, 46, 11  6 of 6 
 

 

objectives that are often in conflict. Therefore, no single optimal solution can satisfy all 
objectives simultaneously. Trade-offs between objectives require the generation of a set of 
solutions to represent the optimal trade-off solutions. 

The mathematical formulation of the multi-objective optimization problem is pro-
vided here, including decision variables and objective functions [20]. The decision varia-
bles represent choices related to purchasing, loaning, and repairing engine components. 
The objective functions aim to minimize the engine maintenance cost, total lead time, and 
engine emissions while maximizing quality. Constraints ensure the selection of at least 
one output and maintain the binary nature of decision variables. 

In this study, the efficiency of the engine components was evaluated using the fol-
lowing scale: 

Original Equipment Manufacturer (OEM) = 4 
FAA/EASA approved = 3 
Civil Aviation Authority Malaysia (CAAM) = 2 
Miscellaneous state aviation organizations = 1 
Bogus or salvaged part = 0 
The mathematical formulation for multi-objective optimization is defined as: 

Decision Variables 
Xij: Binary variable indicating whether material i is bought for task j (1 if bought, 0 

otherwise). 
Yij: Binary variable indicating whether material i is loaned for task j (1 if loaned, 0 

otherwise). 
Zij: Binary variable indicating whether material i is repaired for task j (1 if repaired, 

0 otherwise). 
Three binary decision variables, Xij, Yij, and Zij, were used. Xij represents a purchase 

decision, where 1 denotes buying and 0 denotes not buying the material. Yij represents a 
loan decision, where 1 denotes loaning and 0 denotes not loaning the material. Zij repre-
sents a repair decision, where 1 denotes repairing and 0 denotes not repairing the material. 

The mathematical model can be implemented using MATLAB or a Python-based 
compiler. The researcher can expect to obtain a diverse set of solutions that offer the best 
possible results. The mathematical modeling in this study was performed using Python.  

Figure 2 illustrates two different visualizations and the implementation of the genetic 
algorithm for investigating various functionalities and optimizing performance. These fig-
ures offer insights into the relationships between different parameters and the algorithmʹs 
effectiveness. It is comparing the minimized engine cost with the minimized total lead 
time. The graph was generated using the genetic algorithm, with the parents representing 
actual values and the offspring generated by the algorithm. The graph is generated by the 
algorithm, with parents representing actual values and offspring generated during the 
algorithmʹs execution. The genetic algorithm iteratively searches for local minima until it 
discovers reduced and optimally minimized values. The algorithm follows four primary 
steps: initial population, fitness function evaluation, selection, and crossover/mutation.  

  
Figure 2. Visualizations and the implementation of the genetic algorithm. Figure 2. Visualizations and the implementation of the genetic algorithm.

Figure 3 depicts the visualization for the engine cost and engine maintenance. It was
generated using the genetic algorithm, with the parents representing actual values and the
offspring generated by the algorithm.



Eng. Proc. 2023, 46, 11 5 of 6

Eng. Proc. 2023, 46, 11  6 of 6 
 

 

Figure 3 depicts the visualization for the engine cost and engine maintenance. It was 
generated using the genetic algorithm, with the parents representing actual values and 
the offspring generated by the algorithm.  

 

Figure 3. Visualization for the engine cost and engine maintenance 

The genetic algorithm is executed until optimal values are obtained for linear rela-
tionships. The performance of the optimization model is then evaluated using a receiver 
operating characteristics (ROC) curve, which serves as a measure of performance. The 
ROC curve helps to evaluate the optimization of different functionalities. 

4. Conclusions 
In this research paper, the optimization of different functions for any machine was 

studied in order to evaluate to what degree the functions are interlinked to each other. 
This is so that, based on their parameter optimization, their performances can be enhanced 
and improved. The main motive of conducting this research was to minimize the high 
maintenance cost related to aviation engines and to minimize the hazardous emissions 
caused by the release of gases from airplane engines for the protection of the environment. 
This was achieved by optimizing the function parameters using the genetic algorithm. 

Author Contributions: Methodology, Writing—original draft preparation; Conceptualization: N.K.; 
Investigation, Validation, Software: S.A.A.A.; Formal analysis: T.A.K.; Supervision, Funding acqui-
sition, Project administration: S.S.A.R. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: No datasets were used in this research. 

Acknowledgments: The authors would like to express their gratitude to Nazeer Hussain University 
for their invaluable support during the course of this research. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Inkinen, T.; Hämäläinen, E. Reviewing truck logistics: Solutions for achieving low emission road freight transport. Sustainability 

2020, 12, 6714. 
2. Khan, N.; Sajak, A.A.B.; Alam, M.; Mazliham, M.S. Analysis of green IoT. J. Phys. Conf. Ser. 2021, 1874, 012012. 
3. Wang, Z.; Lin, Y.; Wang, J.; Zhang, C.; Peng, Z. Experimental study on NOx emission correlation of fuel staged combustion in 

an LPP combustor at high pressure based on NO-chemiluminescence. Chin. J. Aeronaut. 2020, 33, 550–560. 
4. Sutkus, D.J.; Baughcum, S.L.; DuBois, D.P. Scheduled Civil Aircraft Emission Inventories for Database Development and Analysis; 2001. 

Report No.: NASA CR-2001-211216; NASA: Washington, DC, USA, 1999. 
5. Perl, A.; Patterson, J.; Perez, M. Pricingaircraft emissions at Lyon-Satolas airport. Transp. Res. Part D Transp. Environ. 2001, 6, 

147–152. 
6. Tokuslu, A. Estimation of aircraft emissions at Georgian international airport. Energy 2020, 206, 118219. 

Figure 3. Visualization for the engine cost and engine maintenance.

The genetic algorithm is executed until optimal values are obtained for linear rela-
tionships. The performance of the optimization model is then evaluated using a receiver
operating characteristics (ROC) curve, which serves as a measure of performance. The
ROC curve helps to evaluate the optimization of different functionalities.

4. Conclusions

In this research paper, the optimization of different functions for any machine was
studied in order to evaluate to what degree the functions are interlinked to each other.
This is so that, based on their parameter optimization, their performances can be enhanced
and improved. The main motive of conducting this research was to minimize the high
maintenance cost related to aviation engines and to minimize the hazardous emissions
caused by the release of gases from airplane engines for the protection of the environment.
This was achieved by optimizing the function parameters using the genetic algorithm.
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