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Abstract: Healthcare-associated infections are serious public health problem. Besides antibacterial,
antifungal, and antiviral therapies, one potential strategy for breaking the chain of infection transmis-
sion is via the installation of antibacterial surfaces. Aluminum is an attractive material for fabricating
frequently touched surfaces such as doorknobs, push plate, bedrails, etc. Recently, our research
group and others have demonstrated that by utilizing appropriate surface treatment technologies,
such as anodization, low-surface-energy passivation, and electrochemical surface modification, on an
AA6061-T6 aluminum alloy, aluminum could be rendered antimicrobial. Such surface technologies
can be efficient in antimicrobial activities, and they also show advantages in terms of robustness
and durability. These novel surfaces have been shown to reduce the microbial burden of clinically
relevant pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.

Keywords: healthcare-associated infection; aluminum; surface modification; antimicrobial surfaces

1. Introduction

Healthcare-associated infections (HCAIs) are serious public health problem [1]. They
are the fourth leading cause of death after cancer, heart disease, and stroke [2]. In Canada,
more than 200,000 patients contract HCAIs yearly, out of which 8000–12,000 of the cases
result in fatality [2]. Besides antibacterial, antifungal, and antiviral therapies, one potential
strategy for breaking the chain of HCAI transmission is to make frequently touched surfaces
antimicrobial to curb the attachment of pathogens. However, the problems associated with
existing antimicrobial solutions, such as a lack of long-term durable antimicrobial coating,
the uncontrolled release of antimicrobial agents, and antimicrobial resistance problems [3],
have necessitated the need for novel, stable, and durable antimicrobial surfaces in addition
to an appropriate cleaning regime for the decontamination of frequently touched surfaces
in hygiene-critical environments [4].

Owing to being lightweight and widely recyclable, aluminum (Al) is increasingly
becoming the material of choice for engineering constructions. Many Al components
are progressively adopted in the fabrication of medical devices [5] and are explored in
fabricating frequently touched surfaces such as doorknobs, push plates, bedrails, over-bed
tables, and countertops [6]. Aluminum has excellent physical, chemical, and mechanical
properties such as a low density, good wear and corrosion resistance, and high elastic
modulus and tensile strength [7]. Aluminum is the third most abundant element in the
Earth’s crust (after oxygen and silicon) and the most abundant metal on earth. It is a highly
reactive metal and exists with a layer of passive aluminum oxide film on its surface. To
render aluminum surfaces antimicrobial, this passive oxide layer needs to be modified
with the appropriate technology. Our research group and others have demonstrated
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that by utilizing appropriate surface treatment technologies, aluminum can be rendered
antibacterial.

This brief review presents the current progress which has been made in antimicrobial
aluminum surface technologies achieved via (i) an anodization process to create a nano-
porous topographical pattern, which kills bacteria on contact; (ii) passivating the nano-
porous topographical pattern to create superhydrophobic properties to repel the initial
attachment of bacteria; and (iii) immobilizing antimicrobial agents on anodized aluminum
to kill bacteria on contact.

2. Mechano-Bactericidal Aluminum Surfaces

In nature, many living things, such as insects, plants, sharks, and geckos, have de-
veloped protective mechanisms towards pathogens, despite their ability to use complex
mechanisms to colonize surfaces [8]. The former, on the other hand, exploit their micro-
and nano-topographical features to induce antimicrobial activity. These surfaces that
kill bacterial cells via topography are called mechano-bactericidal surfaces [8]. The first
mechano-bactericidal surfaces mediated by the nano topography of cicada wings was
reported by Ivanova et al. [9]. In this work, the authors showed that by the pure physical
contact of P. aeruginosa (gram-ve) bacterium on the topographical rough surface of cicada’s
wings, P. aeruginosa died in 30 minutes. As a result, various surfaces on other wings, such
as dragonfly and the skin of geckos, and their synthetic analogues, have been fabricated on
many substrates, including aluminum alloys [10,11].

Hasan et al. [11] recently fabricated an antiviral aluminum surface using a chemical
etching process. The aluminum surface was effective against SARS-CoV-2. In their other
study [6], they reported the antimicrobial ability of a topography-mediated aluminum, fab-
ricated using a chemical etching technique against common multi-drug-resistant pathogens
such as Pseudomonas aeruginosa (P.A) and Staphylococcus aureus (S.A), and on respiratory
viruses such as respiratory syncytial virus (RSV) and rhino virus (RV). While desirable
nanoscale topography is achievable, the mechanical property of the nanoscale coating
is rather weak [12]. In our research group, Agbe et al. [13] utilized anodization as an
alternative surface treatment process to achieve antimicrobial aluminum surfaces with
superior antimicrobial properties and mechanical robustness. In that work, a one-step
hard aluminum anodization process was employed and anodization parameters, such
as electrolytes concentration, current density, and anodization time, were optimized to
obtain desirable surface morphology (with diameters 151 ± 37 nm), which was effective in
inactivating 100% Escherichia-coli (E. coli) bacteria (Figures 1 and 2).
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Figure 1. Representative images of colonies of E. coli in contact with as-received aluminum from 1 to
4 h (A–C); 3 wt.% H3PO4 anodized aluminum coupon-3HP40 from 1 to 4 h (D–F); and the reference
copper samples from 1 to 4 h (G–I). Reprinted with permission from ACS Biomaterials Science &
Engineering 8(3) (2022) 1087–1095. Copyright (2022) American Chemical Society.
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Figure 2. Bactericidal efficiency of E. coli bacteria on 3 wt.% H3PO4 anodized aluminum 3HP40
compared to control samples (as-received aluminum and copper) under 1 h of contact. Data repre-
sent three independent experiments. Reprinted with permission from ACS Biomaterials Science &
Engineering 8(3) (2022) 1087–1095. Copyright (2022) American Chemical Society.

3. Superhydrophobic Antimicrobial Aluminum Surfaces

Scientists have discovered a unique water roll-off property in several plants, such as
lotus leaves. These plants utilize their surface micro-nanoscale structures to adapt and
inhibit colonization as an evolutionary surviving strategy [14]. The micro-nanostructures
are made of long chain palmitic (hexadecanoic) and stearic (octadecanoic) fatty acids [15],
which render them superhydrophobic. Inspired by nature, scientists have now fabricated
superhydrophobic surfaces in the lab by patterning micro-nano structures, followed by
passivation with low-surface-energy molecules. Various strategies such as photolithog-
raphy, sol–gel, plasma etching, anodization, and chemical etching [16] have been used
to fabricate superhydrophobic surfaces, which find wide applications as self-cleaning,
anticorrosion, drag-reduction, and anti-biofouling surfaces of different components [17].
Of particular interest is in an anti-biofouling application, as superhydrophobic surfaces
have the potential to prevent initial bacterial attachment and subsequent biofilm formation.

However, superhydrophobic surfaces fail under long-term exposure in humid
environments [18]. Thus, incorporating bactericides in superhydrophobic surfaces provides
the promise of not only integrating anti-biofouling and antibacterial properties, but also im-
proving their longevity. Chung et al. [19] fabricated silver-perfluorodecanethiolate coatings
on a silicon wafer with both superhydrophobic and antibacterial properties via the precip-
itation method, using perfluorodecanethiol and silver as fluorinated and metal–thiolate
complex precursors, respectively. In another work, Wang et al. [20] fabricated superhy-
drophobic diamond films with both antibacterial and anti-biofouling properties using
both hot filament chemical vapor deposition and a sol–gel perfluorodecyltrichlorosilane
process. In spite of significant effort being made for the use of superhydrophobic coatings
in the application of antibacterial surfaces, the bacterial-repellent performance was rather
low [21,22]. Furthermore, the applicability of such coating is limited due to degradation
with time and a lack of stability.

Novel superhydrophobic coatings, which anchor low-surface-energy molecules on
aluminum substrates for enhanced durability and stability, appear increasingly attractive.
In a recent work by Agbe et al. [23], a novel coating of silver–polymethyhydrosiloxane
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(Ag-PMHS) nanocomposites (anchored on anodized Al) was fabricated via a sol–gel pro-
cess for antibacterial and anti-biofouling applications. The Ag-PMHS nanocomposite
coatings (anchored within an anodized Al oxide (anodized aluminum oxide)), led to en-
hanced adhesion, durability, and stability (Figure 3). The superhydrophobic Ag-PMHS
nanocomposite coatings (achieved by combined effects of nano-rough porous anodized
aluminum-Ag-PMHS nanocomposites, and low-surface-energy passivation), resulted in
bacterial adhesion reductions of 99.0 %, 99.5 %, and 99.3 % for Pseudomonas aeruginosa (P.A.),
E.coli, and Staphylococcus aureus (S.A.), respectively (Figure 4).
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Figure 3. Digital images of scratch test based on American Standard Test Method (ASTM D 3359-02)
showing the adhesion of Ag–PMHS nanocomposite coatings with a Ag+/Si–H molar ratio of 50:2 on:
(A) as-received Al; (B) AAO/Al (AgP-NcAAO); (C) 0.4% w/v silicone incorporated in AgP–NcAAO
(04Sil-AgP–NcAAO); and (D) 04Sil-AgP–NcAAO in 90 days of immersion (04Sil-AgP–NcAAO-90D).
Reprinted with permission from ACS Applied Bio Materials 3 (2020) 4062–4073. Copyright (2020)
American Chemical Society.
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Figure 4. Adhesion reduction in bacteria (S.A, P.A, or E-coli) on superhydrophobic AAO/Al sample
(04Sil-AgP–NcAAO) and control samples (AAO/Al and PMHS/AAO/Al). Data represent multiple
independent experiments. Inset: SEM micrograph of E-coli biofilm on superhydrophobic AAO/Al
sample (Top) and control sample (AAO/Al) (Bottom). Reprinted with permission from ACS Applied
Bio Materials 3 (2020) 4062–4073. Copyright (2020) American Chemical Society.

4. Hydrophilic Antimicrobial Aluminum Surfaces

Hydrophilic antimicrobial coatings are surfaces with a contact angle between 10◦

and 90◦. Like superhydrophobic antimicrobial surfaces, the fabrication of hydrophilic
antibacterial surfaces involves physical, chemical, and biological processes. These surfaces
are particularly useful for orthopedic and medical implant devices as they enhance protein
conditioning and cell tissue integration [24]. Various hydrophilic antimicrobial agents
such as TiO2, ZnO, Ag, and Cu nanoparticles are commonly fabricated on metals and
other substrates. However, silver-based hydrophilic antibacterial coatings fabricated via an
electrochemical reduction process are further discussed.
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As a widely used engineering material (for the fabrication of frequently touched sur-
faces), aluminum has become one of the generally used substrates for the electrodeposition
of metallic coatings such as silver. For the electrodeposition of silver on anodized aluminum
oxide (AAO/Al), an AC power source is recommended [25,26]. In a typical AC electrode-
position process, the barrier oxide layer acts as a rectifying p-n junction source. Therefore,
AAO/Al templates can be used directly as the cathode during an electrodeposition process.
Thus, the barrier layer becomes preferentially conductive during the cathodic half-cycle.
This rectifying property allows for a reduction in metal ions in the pore while decreasing
the oxidation rate of the deposited metal [26]. Chi et al. [25] deployed AC electrodeposition
to deposit Ag for an antimicrobial application. Their results showed a 95% antimicrobial
efficiency for E. coli, P. aeruginosa, Streptococcus faecalis, and S. aureus. On the other hand,
for DC silver electrodeposition, it is necessary to separate the AAO/Al templates from the
base aluminum metal by chemical etching, followed by the metallization of the former [27];
while DC silver electrodeposition on aluminum is feasible, in practice, it can be challenging
due to the increased complexity of the overall electrodeposition process [28].

However, a novel approach was recently reported by Agbe et al. [29]. In their work,
a two-step electrochemical process was deployed to fabricate Ag3PO4 nanoparticles on
anodized aluminum oxide for antimicrobial applications. Ag+ ion was first reduced to Ag0

metal at a reduction process, while the metallic Ag0 was oxidized again into Ag+ ion. The
antimicrobial properties of the Ag3PO4-coated anodized aluminum (Ag3PO4/AAO/Al)
resulted in 100% E. coli bacteria inactivation (Figure 5).
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Figure 5. Antimicrobial activity of E. coli bacteria on Ag3PO4-coated anodized AL (Ag3PO4/AAO/Al)
relative to the control samples (copper, AAO/Al, and as-received aluminum) under different contact
times. Reprinted with permission from Surface and Coatings Technology 428 (2021) 127892. Copyright
(2021) Elsevier B.V.

5. Conclusions

Multidrug-resistance pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa,
and Escherichia coli can survive on frequently touched surfaces, such as doorknobs, push
plates, over-bed tables, and bed rails, in hygiene-critical environment. Such surfaces can
become potential reservoirs for the transmission of healthcare-associated infections. Antimi-
crobial coatings have been recognized as an important strategy for reducing the microbial
burden and breaking the chain of infections. Recent advances in antimicrobial aluminum
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surface technologies have demonstrated that the utilization of novel surface engineering
strategies, such as anodization, low-surface-energy passivation, and electrochemical surface
modification of an AA6061-T6 aluminum alloy, has proved to be efficient in antimicrobial
activities, and there are also advantages in terms of robustness and durability. These novel
surfaces have shown the ability to reduce the microbial burden of clinically relevant and
healthcare-associated pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, and
Escherichia coli.
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