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Abstract: The current study of Al alloys aims to improve their high-temperature mechanical proper-
ties by forming intermetallic precipitates with high-temperature stability. Using rare earth elements
(RE) to achieve this goal increases the production cost and, hence, minimizes the economic advantage
of the conventional casting processes. Therefore, alternative additives/methods with reasonable costs
become mandatory. Al-Ce alloys were found to be a promising group of alloys. Cerium is the most
economically abundant RE that can be added to aluminum alloys. The main intermetallic phase, i.e.,
Al11Ce3, is characterized by its high-temperature stability compared to other Al-based intermetallic
compounds. Several research works modified the morphology of the stable Al11Ce3 phase to enhance
the high-temperature properties of Al-Ce alloys. These methods were heat treatment, chemical
modification, and solidification processing. This review article summarizes the “few” available
research works, that studied the influence of solidification processing on the microstructure features
of Al-Ce alloys. Among the solidification processing techniques available, special attention was given
to microstructure processing via ultrasonic treatment and the corresponding effects on mechanical
properties and electrochemical behavior. Future research points were also proposed.

Keywords: Al-Ce alloys; solidification processing; microstructure; mechanical properties; corrosion

1. Introduction

Al-based alloys containing intermetallic particles are widely used in automotive and
aerospace industries to meet regulatory and economic pressures, hence reducing energy
consumption while maintaining a reasonable manufacturing cost. The strength of the major
group of these alloys depends on the formation of precipitates during heat treatment [1].
However, upon exposure to high temperatures that exceed ~250 ◦C for extended periods,
this strengthening mechanism fails. This failure principally occurs due to the instability
and growth of these precipitates and their dissolution in the aluminum matrix [2]. Even the
cast Al-Si group, which contains thermally stable eutectic Si particles, reported creep failure
cases [3] because of the little strength they provide to the host Al matrix. This problem was
overcome by adding rare earth elements (RE) that refine the cast microstructure, enhance
the mechanical properties, and increase the melty fluidity [4]. The diffusion coefficients
of these RE in Al matrix was found to be one-third and one-fourth that of Mg and Si [5,6],
respectively. Recently, more focus was placed on the elemental Ce, which is the most
discarded RE, despite its economic feasibility as a means of mass production [7].

What distinguishes Al-Ce intermetallic phases is their unique ability to maintain their
shape and size after exposure to high-temperature treatment. This ability is due to the
thermally stable intermetallic phases that form. In the work of Belov and Khvan [8] on
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Al-Ce-Cu system, it was detected that Al and CeCu4Al8 (eutectic) phases do not grow
with heating and are capable of fragmenting to a maximum size of 1–2 µm after being
annealed to 590 ◦C. In another study [9], an Al-16Ce-8Ni alloy showed a microstructure
that contained finely dispersed and spheroidized Al4Ce and Al3Ni eutectic particles after
annealing at 450 ◦C. Due to these highly stable intermetallic particles, several works on
the Al-Ce alloys [10] reported remarkably high-temperature mechanical property retention
compared to the other commercial Al alloys.

The mechanical properties of the Al11.3Ce3.2Ni1.2Mn (wt%) alloy were investigated
by Kozakevich et al. [11]. Stable primary and eutectic (Al11Ce3 and Al23Ce4Ni6) phases
were obtained, which resulted in 75–83% retention of the tensile strength at 250 ◦C, while
a 14–61% greater modulus of elasticity compared to that of RT was achieved. Among the
studied compositions [9], some Al-Ce-Mg alloys showed a full recovery of their mechanical
properties at RT when exposed to high temperatures. Daniel and Dunand [7] found that in
a cast hypoeutectic Al-6.9Ce-9.3Mg alloy, aging for 8 weeks at 450 ◦C did not change the
microhardness of the Al(Mg)-Al11Ce3 eutectic region. Moreover, excellent creep resistance
at 300 ◦C was obtained.

In the review presented in this paper, the methods used to modify the microstructures
of Al-Ce alloys were discussed with a focus on processing conducted by controlling the
solidification process.

2. Microstructure Refinement of Al-xCe Alloys

In light of the aforementioned literature, controlling the microstructure of Al-Ce alloys
by designing the type of intermetallic particles to be formed, as well as their size and
distribution, is the appropriate methodology to achieve the required high-temperature
properties. According to the Al-rich Ce partial phase diagram in Figure 1 [12], Al11Ce3 is
the most common intermetallic phase. It has been reported that this phase is the essential
intermetallic phase that controls the high-temperature properties of Al-Ce alloys [11,13].
Several investigations worked on modifying the shape of the secondary Ce-intermetallic
phases [12] through either chemical modification [14], rapid solidification [13,15], or apply-
ing mechanical/magnetic stirring [16], as well as, most recently, via solidification under
ultrasonic vibrations [17]. Among these processes, those related to solidification processing
are the most efficient.
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3. Solidification Processing of Al-xCe Alloys

Solidification processes used to modify Al-Ce alloys are designed based on their
microstructures. The microstructures of Al-Ce alloys are composed of an Al matrix and
secondary intermetallic phases. According to Czerwinski and AmirKhiz [18], the mi-
crostructure of Al-Ce changes significantly depending on Ce content. The hypoeutectic
group exhibits the proeutectic Al, with dendritic morphology representing about half of the
surface area, and the eutectic is placed in the inter-dendritic regions. At Ce, the contents of
10 wt% eutectic dendrites disappear, and some fine white areas represent Al. Increasing
Ce to 15 wt% enlarges the volume fraction of the Al11Ce3 intermetallic phase. Further,
the increase in the amount of Ce to 20 wt% covers the whole microstructure with Al11Ce3
particles. Figure 2 [18] shows the morphological changes associated with increasing Ce con-
tent in the binary Al-Ce systems. Generally, processing Al-Ce alloys through solidification
includes rapid solidification, solidification under mechanical/magnetic stirring, and the
most recent method of ultrasonic-assisted solidification.
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3.1. Rapid Solidification

Zhang et al. [19] investigated the rapid solidification effect (RS) on the intermetallic
features of some Al-Ce alloys. It was observed that RS had a significant effect on the
microstructure of Al-8Ce and -20Ce alloys while having no effect on the constituents of the
alloy. On the other hand, the microstructure and alloy constituents were both influenced by
the rapidly solidifying Al-36% Ce alloy.

Kozakevich et al. [11] established the relationship between the cooling rate and mi-
crostructure refinement of the Al-11Ce-3 Ni-1.2Mn alloy using a wedge-shaped mold.
The size of both Al23Ce4Ni6 and primary Al11Ce3 phases was decreased in the range of
0.18 ◦C/s to 0.32 ◦C/s, which increased the high-temperature strength of the alloy. Increas-
ing the cooling rate, which, thus, exceeds 1.36 ◦C/s, prevented the formation of Al11Ce3
and allowed the Al23Ce4Ni6 phase to nucleate.

Ye et al. [20] prepared a cast hyper eutectic Al-14 wt% Ce using a wedge-shaped
copper mold. A transition from a hyper- to a hypo-eutectic microstructure occurred due to
rapid solidification. This transition showed a clear interface at a cooling rate of 1598 K/S,
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while this interface became non-significant at lower cooling rates at which both primary
Al11Ce3 intermetallic and eutectic colonies exist.

3.2. Processing via Mechanical/Magnetic Stirring

The solidification processing of aluminum alloys through mechanical or magnetic
stirring proved to be efficient in terms of refining and fragmenting the secondary inter-
metallic phases [21]. The processing of Al-5 wt% Ce alloys through magnetic stirring
was investigated by Wang et al. [16]. It was observed that the Al-Al11Ce3 eutectic shape
changed from the lamellar to fibrous morphology when the melt was stirred at 630 ◦C
using a permanent magnet and poured in a metallic mold. This fibrous structure provides
promising mechanical properties that can be used to cast Al-5 wt% Ce alloy at high service
temperatures.

In a recent technical report [22], the mechanical vibration setting shown in Figure 3
was used as an economical alternative to melt stirring. An Al-4 wt% Ce-10 wt% Mg alloy
was prepared using an induction furnace. The liquidus was found to be around 645 ◦C.
Therefore, three pouring temperatures were decided relative to the liquidus, namely 655,
665, and 675 ◦C. The melt was poured into vibrating metallic molds. The frequency of the
mechanical vibrator was kept constant at 50 Hz during solidification. The vibration was
held for 4 min after pouring the liquid aluminum. It should be noted that this time was
sufficient to solidify the specimens. The solidified samples were then allowed to cool to
room temperature. The preliminary microstructure investigation is summarized in Figure 4.
Remarkably, applying the mechanical vibration at 655 ◦C, which is about 10 degrees above
the liquidus, achieved the best combination of good fragmentation and homogenous
distribution of Al11Ce3 intermetallic particles. At 665 ◦C, the particles were further refined;
however, coarse particles were frequently observed in the microstructure. At 675 ◦C,
particles were coarsened and inhomogeneously distributed. This finding suggests that the
optimum mechanical vibration temperature to treat this alloy is 665 ◦C.
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3.3. Ultrasonic-Assisted Solidification

Based on the idea of melt agitation via magnetic stirring, solidification under ultrasonic
vibrations has been developed. Eskin [23] reported that the high-frequency oscillations pro-
duced by ultrasonic waves induced cavitation and intensively mixed the melt constituents
via acoustic streaming. The experimental studies [24–26] revealed that the refining action of
ultrasonic treatment was not only based on the reduction in particle sizes, but also provided
undercooling that was enough to cause the cavitation of these secondary particles during
the solidification process. Ultrasonic treatment can principally refine the intermetallic
particles via one of two mechanisms: dendritic fragmentation or heterogeneous nucleation,
as suggested earlier [27]. If the melting temperature is under the liquidus, when the first
solid starts to form, dendritic fragmentation occurs due to the interaction between the
cavitation zone and the solidification front. This process leads to fragmenting dendrite
grains and the multiplication of the grains [28]. On the other hand, if the melt tempera-
ture is between the melting temperature and the liquidus, the heterogenous nucleation is
the dominant mechanism. In this case, three possible entire mechanisms can occur. The
first mechanism is that ultrasonic-generated bubbles grow and explode, producing strong
shock waves and increasing the local pressure, thus reducing the solidification temperature,
which encourages nucleation in the cavitation melt volume (Le Chatelier principle) [29].
The second mechanism assumes that when bubbles grow, and the liquid inside of them
evaporates, the bubbles’ temperature decreases, which causes the undercooling of the melt
at the bubbles’ surface, which triggers nuclei and then disperses these nuclei in the melt
upon explosion (Kapustina concept) [30]. The last heterogeneous nucleation mechanism
considers the cracks on substrate surfaces and the inclusions that either exist in the melt or
formed upon cooling to be wetted by the melt upon bubble explosions and act as effective
nucleation sites (Eskin) [23].

In the works of El-Hadad et al. [17,30], solidification under ultrasonic vibration was
carried out for the first time on Al-Ce alloys. An Al-10 wt% Ce alloy was processed at
different pouring temperatures (645–665 ◦C) relative to the alloy liquidus (~644 ◦C). The
Al11Ce3 intermetallic particles were fragmented (from ~30 µm to ~3 µm) and evenly dis-
tributed in the melt at the processing temperature of (655 ◦C), which was about 10 degrees
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above the liquidus (see Figure 5). This effect of ultrasonic treatment gradually dimensioned
upon increasing the pouring temperature and coarse, and unevenly dispersed particles
were observed at 665 ◦C. The mechanical properties were correspondingly affected, as the
specimens processed at the optimum temperature showed the best wear resistance at room
and high temperatures.
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In [30], the corrosion behavior of the Al-10 wt% Ce alloy prepared in [30] was stud-
ied in 3.5% NaCl solution. It was found that the corrosion resistance was significantly
affected by the intermetallic particle size. The corrosion rate of the unprocessed samples
was reduced from 0.00068 to 0.00006 mm/year, and the corrosion resistance increased
from 71 to 343.8 kΩ, when the alloy was processed via ultrasonication at the optimum
condition (655 ◦C). Moreover, increasing the processing temperature beyond the optimum
coarsened the intermetallic phase and encouraged the pitting corrosion, as observed in the
microstructure in Figure 6, of the corroded samples under different processing conditions.
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4. Future Potential Research

Based on the above results of the ultrasonic-assisted solidification experiments, ex-
cellent structure refinement was achieved when the Al-Ce alloys were processed at the
optimum treatment temperature. However, more efforts are needed to enable the use of
powerful ultrasonic systems to modify the huge ingots in mass production processes.
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