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Abstract: This study investigated the effects of annealing on the microstructure, mechanical proper-
ties, and electrical conductivity (EC) of AA4043 rods produced through the Properzi CCR process.
Annealing was conducted at two temperatures (200 ◦C and 300 ◦C) for 4 h. Characterization tech-
niques were performed on the rod samples, including optical microscopy, EBSD, microhardness,
tensile tests, and EC measurements. The results showed a significant improvement in EC with
decreased mechanical strength during annealing. The sample annealed at 300 ◦C exhibited the most
favorable combination of EC (57.48% IACS), microhardness (41 HV), and ultimate tensile strength
(124 MPa). Furthermore, the image analysis revealed slight alterations in the shape factors of eutectic
Si particles with increasing annealing temperature. In addition, EBSD results demonstrated that the
annealing promoted the recrystallization process.

Keywords: Al-Si conductor alloys; annealing; electrical conductivity; mechanical properties

1. Introduction

The growing global demand for electricity and the increasing adoption of renewable
energy sources, such as solar and wind power, present significant challenges in their
seamless integration into the electrical power grid. One of the primary obstacles involves
the development of new transmission and distribution lines that can efficiently transport
energy from remote farms to areas with high demand. Consequently, these high-voltage
transmission lines play a pivotal role in the efficient distribution of renewable energy [1].
Two common types of aluminum conductor cables are typically employed for overhead
transmission lines: aluminum conductor steel reinforced (ACSR) and all-aluminum alloy
conductor (AAAC) [2]. The high density of the core steel and low strength of AA1350
cables in ACSR lines negatively affect the power transmission. Consequently, lines become
heavier and are subjected to significant mechanical stresses, which ultimately pose a risk
of instability. On the other hand, the AAAC cables, made of the precipitation-hardened
AA6201 alloy [3–5], suffer from reduced EC (52.5% IACS) [6]. Hence, there is an increasing
demand for innovative Al-based conductor cables that can provide both high strength
and electrical conductivity, effectively meeting the increasing requirements of the electrical
conductor industry.

Hypoeutectic Al-Si alloys (e.g., AA4043 with 5 wt.% Si) have been extensively used
in the automotive industry as filler materials for welding and brazing wires. Despite
their advantageous attributes, including a high strength-to-weight ratio, high castability,
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and excellent thermal conductivity, these alloys fall short in EC, limiting their use as
electrical conductors [7]. The primary contributor to their reduced EC is the presence of
coarse lamellar-like eutectic Si, which causes electron scattering, and the semiconductor Si,
possessing lower intrinsic EC than Al. Additionally, impurities such as transition metals
(TMs) in the solid-solution state increase the lattice distortion of Al, further diminishing
the EC of the alloy.

Researchers have tackled these challenges using various approaches. These ap-
proaches involve purifying the Al matrix through Boron treatment [8], modifying the mor-
phology of the eutectic Si by employing modifiers like Sr, and utilizing high-temperature
heat treatment [9–13]. Another potential strategy to enhance the EC of these alloys is the
application of plastic deformation to achieve a homogeneous dispersion of refined eutectic
Si within the Al matrix [14]. Guo et al. [13] studied the impact of Sr and Sb elemental
modification and T6 heat treatment on the EC of Al-8Si alloy. The results revealed that Sr
modification led to a transformation of the eutectic Si morphology into a fibrous shape,
which significantly improved EC. In contrast, the influence of the Sb modifier was compar-
atively weaker. Additionally, the T6 treatment was found to increase EC by spheroidization
of flake-like eutectic Si. However, prolonged treatment negatively affected EC due to the
coarsening of fibrous eutectic structures.

Ye et al. [14] conducted a study to examine the impact of hybrid boron treatment, Sr
modification, homogenization heat treatment, and hot extrusion on the EC and ultimate
tensile strength (UTS) of Al-4Si alloy. The results indicated that the incorporation of
Sr-B treatment led to an increase in EC from 41.8% IACS to 46.6% IACS. After the high-
temperature solution treatment, the EC increased to 53.9% IACS. The EC was further
enhanced to 57.3% IACS after the hot extrusion process. Compared to the as-cast condition,
the EC, UTS, and elongation after the treatments were enhanced by 41.6%, 60.9%, and
136.3%, respectively. All the aforementioned treatments can be achieved using the Properzi
continuous casting-rolling (CCR) process, which is widely employed for the production
of Al conductor cables. This process entails casting a trapezoidal cross-section bar using a
Properzi wheel, followed by hot rolling in an in-line multi-stand process to produce a rod
with a diameter of 9.5 mm. The hot rolling process involves applying up to a 90% reduction
in the area [15–17].

Despite extensive research studies on the mechanical properties of hypoeutectic Al-
Si products, the effect of low-temperature direct annealing on the EC of these materials
has never been reported. This study investigates the impact of direct annealing at two
temperatures (200 and 300 ◦C) on the mechanical properties, EC, and microstructure of the
AA4043 alloy produced by the Properzi CCR process.

2. Materials and Methods

The AA4043 rods were manufactured using the Properzi CCR process, as depicted in
Figure 1. After preparing the liquid metal with the targeted chemical composition in the
melting furnace, the molten metal underwent degassing, grain refinement, B treatment,
and Sr modification. The chemical composition of the prepared metal, analyzed by optical
emission spectroscopy, is presented in Table 1. All chemical compositions are presented in
weight percent (wt.%). The liquid metal was cast by the Properzi casting machine, through
which the trapezoidal cross-section bar was produced. Subsequently, the cast bar was
fed into an in-line multiple stand hot rolling unit, where the bar was deformed into the
9.5 mm diameter rod. The as-rolled rods (referred to as the As-R sample) were sectioned
and subjected to annealing at 200 ◦C and 300 ◦C for 4 h. These annealed samples are called
the 4–200 and 4–300 samples. The annealing process was conducted using a programmable
furnace without prior solution heat treatment. Following annealing, the samples were
cooled gradually inside the furnace until they reached room temperature.
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Figure 1. Flowchart of Properzi continuous casting-rolling for rod production. 
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Table 1. The chemical composition of the AA4043 rods studied (wt.%).

Alloy
Elements

Si Fe Cu Mg Ti V B Sr Al

AA4043 4.9 0.10 0.03 0.001 0.008 0.001 0.004 0.029 Bal.

The metallographic samples were prepared following the standard grinding and
polishing procedures. The as-polished samples were examined using optical microscopy
(Nikon, Eclipse ME600, Nikon Co, Tokyo, Japan). The characteristics of the eutectic Si
particles were analyzed on optical micrographs obtained from the As-R and annealed
samples. For each sample, measurements were conducted by ImageJ software (version
1.53t) on 20 micrographs, through which the mean aspect ratio, mean equivalent circular
diameter, and mean sphericity of the eutectic Si particles were quantified. Additionally,
scanning electron microscopy (SEM, JEOL-6480LV, JEOL Ltd., Tokyo, Japan) equipped
with an electron backscatter diffraction (EBSD) system was employed to investigate the
deformed structure of the rods in longitudinal sections. The EBSD analysis was conducted
with a step size of 1 µm. The EBSD raw data was then analyzed using Channel 5 and
ATEX [18] software. For the analysis of the grain microstructure, the misorientation angles
were categorized into three ranges: 2–5◦ for low-angle grain boundaries (LAGBs), 5–15◦

for medium-angle grain boundaries (MAGBs), and greater than 15◦ for high-angle grain
boundaries (HAGBs).

Microhardness and tensile tests were conducted to assess the mechanical properties of
the rods. For microhardness testing, longitudinal sections of the samples were examined
parallel to the rolling direction of the rod. A force of 25 g was applied with a dwell time of
20 s. At least eight measurements were taken, and the average hardness value was recorded.
Tensile tests were performed on the rod samples with a gauge length of 250 mm and a
diameter of 9.5 mm, following the ASTM B557M standard [19]. The average strength values
were determined by three tensile tests for each condition. The EC was measured using a
Megger DLRO10HD resistance ohmmeter (Megger, Dallas, TX, USA) on the rod samples of
300 mm in length and 9.5 mm in diameter, following the ASTM B193 standard [20]. At least
five measurements were taken for each sample, and the average EC value was reported.

3. Results and Discussion
3.1. Mechanical Properties and Electrical Conductivity

Figure 2a illustrates the impact of annealing states (e.g., As-R, 4-200, and 4-300) on the
microhardness and EC of the studied samples. As the annealing temperature increased,
the EC value significantly improved while microhardness decreased. The As-R sample
had the lowest EC value of 50.08% IACS. However, the 4-200 and 4-300 samples exhibited
enhanced EC values of 54.18% IACS and 57.48% IACS, respectively. The As-R sample had
the highest microhardness value of 48 HV, while the 4-300 sample displayed the lowest
value of 41 HV.
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Figure 2. Influence of annealing temperature on (a) EC and microhardness (b) Ultimate tensile
strength and elongation of AA4043 alloy, and (c) comparison of UTS and EC of this study with
commercial Al alloys including harness wire [21], AA8030/AA8176 [22], AA1350-O [23], AA4043-(O,
H14, and H16) welding wire (from MatWeb Material Property Database).

Figure 2b shows the UTS and elongation for As-R and annealed samples. The UTS
values decreased with increasing annealing temperature, whereas the elongation of the
samples increased. The UTS values exhibited a similar trend with microhardness. The As-R
sample exhibited a UTS of 180 MPa, while the 4-200 sample showed a UTS of 148 MPa,
and the 4-300 sample displayed a further decrease to 124 MPa. In terms of elongation, the
As-R sample had a value of 18%, which slightly increased to 18.6% for the 4-200 sample
and further increased to 22.5% for the 4-300 sample.

Figure 2c compares the EC and UTS values of the samples from this study, the AA4043
welding wire, and the automobile harness wires (e.g., AA1350-O, AA8030, and AA8017
alloys). The comparison provides insights into the relative performance and suitability of
these materials for electrical conductor applications based on their EC and UTS properties.
The As-R sample exhibited higher EC and UTS values than conventional AA4043 welding
wires. The approximate 10% IACS improvement in the EC of the As-R sample compared
to traditional AA4043 welding wires signifies the effectiveness of the B-treatment and
Sr-modification processes in this study. Moreover, a comparison between the 4-300 and
As-R samples indicated an additional 8% IACS improvement in EC due to the annealing
treatment. Therefore, a significant improvement in the EC is achieved in this study, ap-
proximately 40% (from 41% IACS of welding wires to 57.48% IACS of 4-300 samples). The
findings of this study suggest that the employed production techniques and treatments
have effectively enhanced the EC of AA4043, showing its potential as a promising candidate
for various electrical conductor applications, such as electrical wiring, power transmission,
and other related applications.
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3.2. Morphology of Eutectic Si Particles

The morphology and distribution of eutectic Si particles play a crucial role in deter-
mining the EC and mechanical properties of hypoeutectic Al-Si alloys. Figure 3 presents
the typical optical micrographs of the As-R and annealed samples in the longitudinal
section, with eutectic Si particles appearing grey (indicated by red arrows). As depicted
in Figure 3a–c, the eutectic Si particles exhibited a homogeneous distribution with a fine
globular morphology along the rolling direction (RD), indicating the effectiveness of Sr
modification and the severe plastic deformation induced by the Properzi CCR process.
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The effect of annealing on the morphology of the Si particles was investigated through
statistical analysis using image analysis, as presented in Figure 4. The mean equivalent
circular diameters of the eutectic Si particles decreased as a function of annealing tempera-
ture (Figure 4a). For instance, it decreased from 1.05 µm in the As-R sample to 0.91 µm and
0.86 µm in the 4-200 and 4-300 samples, respectively. Similarly, Figure 4b demonstrates that
the mean aspect ratio of the eutectic Si particles followed a similar trend, decreasing from
approximately 1.8 in the As-R sample to around 1.6 in both annealed conditions.
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The spherical morphology of eutectic Si particles offers the advantage of providing the
smallest interface with the α-Al matrix compared to other Si morphologies. This decreases
the matrix/precipitate interface, which contributes to the electron scattering, thus longer
access paths for free electron traveling between eutectic Si particles, leading to improved
EC [9,24]. Sphericity, which quantifies the similarity of a particle to a sphere, is an important
parameter in assessing the shape of particles. A sphericity value of 1 indicates a perfectly
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spherical shape. Figure 4b presents the sphericity values for the As-R and annealed samples.
The sphericity value assigned to the As-R sample is 0.82, indicating that it achieves up to
82% of the maximum possible sphericity. These results indicate that Sr modification and
the Properzi CCR production method were quite effective in producing AA4043 Al alloys
with eutectic Si particles exhibiting a near-perfect spherical shape. Furthermore, Figure 4b
demonstrates a slight enhancement in sphericity of the 4-200 sample, showing an increase
from 0.82 to 0.83 and further improvements to 0.85 for the 4-300 sample.

The quantitative analysis showed that increasing the annealing temperature led to
changes in the morphology of eutectic Si. However, such changes in eutectic Si morphology
were not substantial, and therefore, its influence on the EC may be negligible. This finding
differs from previous studies in the literature [9,12,25], which have shown significant im-
provements in EC through eutectic Si modification using high-temperature heat treatments,
typically ranging from 500 ◦C to 540 ◦C.

3.3. Microstructural Evolution

Figure 5a–c presents the inverse pole figure (IPF) maps at the longitudinal section
for the As-R sample and samples annealed at 200 ◦C and 300 ◦C for 4 h. From Figure 5a,
it can be observed that the majority of the grains in the As-R sample exhibit elongated
features aligned with the rolling direction. Similarly, even after annealing at 200 ◦C and
300 ◦C for 4 h, as shown in Figure 5b,c, the grains maintain their elongated shape in the
rolling direction.
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Figure 6 shows the quantitative results of misorientation angles as a function of
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to the As-R sample. Specifically, the sample annealed at a lower temperature (4-200)
exhibits the highest fraction of MAGBs, while the sample annealed at a higher temperature
(4-300) has the lowest fraction. MAGBs are considered to be the transitional boundaries
between LAGBs and HAGBs. The results confirm a higher rate of transformation of
LAGBs into MAGBs and HAGBs in the high-temperature annealed sample, leading to a
higher fraction of recrystallization. On the other hand, in the low-temperature annealed
sample, MAGBs play a more significant role in softening the samples. Moreover, the
higher proportion of MAGBs in the 4-200 samples supports the hypothesis that recovery
is the predominant softening mechanism in lower-temperature annealed samples, while
recrystallization prevails in high-temperature annealed samples, as reported in previous
studies [26,27].
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The recovery and recrystallization in the annealed samples are further supported by
the grain orientation spread (GOS) maps presented in Figure 5d–f for the As-R, 4-200, and
4-300 samples, respectively. The GOS maps provide insights into the dislocation density
and strain distribution within each grain. Grains with GOS values below 2◦ are associated
with recrystallized grains, while higher GOS values (>5◦) indicate deformed structures [28].
In Figure 5d, the As-R sample exhibits a higher GOS value (>5◦), indicating a significant
proportion of deformed structure with limited recovery and recrystallization. On the other
hand, the annealed samples show GOS values below 5◦, confirming substantial recovery
and recrystallization. The presence of subgrains within the grain interiors further supports
the occurrence of recovery in the annealed samples. Additionally, small grains observed
along the initial grain boundaries in the As-R and annealed samples provide further
evidence of partial recrystallization [28]. Figure 6 displays the fraction of recrystallized
grains as a function of annealing temperature. The As-R sample exhibits a recrystallization
area fraction of 23%, which increases to 31% and 38% for the annealed samples at 4-200 and
4-300, respectively. This confirms the progressive increase in recrystallization with higher
annealing temperatures.

While the observed partial recrystallization and changes in misorientation angles
provide some insights into the mechanical properties (such as UTS, microhardness, and
elongation), they may not fully explain the improvements in the EC observed in the
annealed samples. Future study is necessary to identify the main factors that contribute to
the enhanced EC resulting from direct annealing.

4. Conclusions

The effects of direct annealing on the EC, microhardness, UTS, and elongation of
AA4043 rods produced using the Properzi CCR method were evaluated. The following
conclusions can be drawn:

Increasing the annealing temperature led to a decrease in UTS and microhardness
while simultaneously increasing elongation and EC. This indicates that the direct annealing
temperature significantly influences the mechanical and electric properties of AA4043.

Among the annealed samples, the one annealed at a higher temperature (300 ◦C for 4 h)
exhibited the highest EC (57.48% IACS), elongation (22.5%), and the lowest UTS (124 MPa)
and microhardness (41 HV).

Quantitative image analysis revealed that the morphological changes of the eutectic Si
particles were marginally affected by the annealing process.

EBSD analysis showed that most grains in both as-rolled and annealed samples
retained their elongated shape aligned with the rolling direction. However, the annealing
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at 200 ◦C and 300 ◦C resulted in increased MAGBs and recrystallized grains, indicating
recovery and recrystallization at elevated temperatures.

Overall, these findings provide insights into the influence of direct annealing on the
properties of AA4043 and the role of annealing temperature in controlling its mechanical
and electrical behavior.
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