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Abstract: We present a sparsity-promoting RBF algorithm for time-series prediction. We use a time-
delayed embedding framework and model the function from the embedding space to predict the next
point in the time series. We explore the standard benchmark data set generated by the Mackey–Glass
chaotic dynamical system. We also consider a model of temperature telemetry associated with the
mouse model immune response to infection. We see that significantly reduced models can be obtained
by solving the penalized RBF fitting problem.

Keywords: skew-radial basis functions; reduced order models; sparse optimization; time-series
prediction

1. Introduction

Radial basis functions (RBFs) provide an attractive option for the fitting of data in
high-dimensional domains. They are appealing for their simplicity and compact nature
while enjoying universal approximation theorems suggesting, in principle, that they are
potentially as powerful as other methodologies. Traditional RBF expansions are of the form

f (x) = ∑
i

wiφ(‖x− ci‖) (1)

where f : R→ R, and the function φ(·) is selected from a variety of options including func-
tions such as {r, r3, r2 ln r, exp(−r), exp(−r2), . . .} and placed at points {ci}. Unlike the
fully nonlinear optimization problems encountered with multilayer perceptrons, recurrent
neural networks, and deep convolutional networks, the weights in RBF expansions can be
determined by solving aleast-squares problem. The RBF centers {ci} can be found using a
variety of approaches including random selection, clustering, or nonlinear optimization.
The added property of skewness, introduced in [1], makes an RBF-based approach more
powerful at fitting asymmetric features in the data.

Skew-radial basis functions (sRBF) introduce the symmetry-breaking function si :
R→ R for each center, i.e.,

f (x) = ∑
i

wisi(x; Di)φ(‖x− ci‖Wi ) (2)

The matrix Di consists of the skew shape parameters, and Wi is a diagonal weighting for
the Euclidean inner product.

Radial basis functions were introduced as an alternative to artificial neural networks
for function approximation based on the flexibility of the optimization problem [2]. They
have proven particularly useful for both reduced-order and adaptive, or online modeling
of data-streams. Given that the contribution of each individual basis function to the
complexity of the model is easily interpreted, they may be sequentially placed where
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they are most needed until the data are fitted [3]. Alternatively, one can employ linear
programming to adapt a model as changes are detected in the distributions of the data [4].
A comprehensive review of the RBF literature may be found in [5].

2. Sparse Skew RBFs

Building off of traditional RBF (1) and skew RBF formulation (2), we introduce sparsity
via L1 penalization for the number of centers via the solution of the optimization problem

min
{wi ,Wi ,Di ,ci}

∥∥∥∥∥y−
nc

∑
i=1

wisi(x; Di)φ(di(x, ci; Wi))

∥∥∥∥∥+ α
nc

∑
i=1
|wi| (3)

We follow the choices in [1] (Section 4.3) for choice of si and φ. The per-center inner product
and induced norm for a single center ci with u, v ∈ Rn are

〈u, v〉Wi = uTWiv ; ||u||Wi =
√
〈u, u〉Wi (4)

with a symmetric positive definite Wi. The metric is di(x, ci; Wi) = ‖x− ci‖Wi , and choice
of base RBF φ(r) = exp(−r2) unless stated otherwise. The skew functions si have shape
parameters that are optimized for each basis function. We specialize to skew matrices
which are diagonal; Di = diag(λi), λi ∈ Rn; so

si(x; λi) =
1
π

arctan(λT
i (x− ci)) +

1
2

(5)

so si : Rn → (0, 1). Using diagonal Di parameter matrix produces a skew which is
interpreted as having a direction and magnitude of effect; see Figure 1 for an illustration of
this idea with a single sRBF in R2.
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Figure 1. Visualization of level sets a single skew RBF as in Equation (2) in R2 using W = I and
diagonal D = diag(` cos(θ), ` sin(θ)). Setting ` = 0 (D = 0) restores symmetry. Various θ and `

(vectors shown in panels) directly correspond to a direction and magnitude of asymmetry in the RBF.
Further shape control comes with choice of Euclidean W-norm (not shown).

We have solved the optimization problem in Equation (3) to compute a parsimonious
expansion given by Equation (2). For scalar time series, this is performed using a time-delay
embedding of the series {x1, x2, x3, . . . }, where the fitting problem becomes a map from an
l-dimensional embedding space to the next time-point of interest, e.g.,

xn+1 = f (xn, xn−T , xn−2T) (6)

where typically we choose l = 3, and T is a delay time for sampling the time series at
uncorrelated points. In this approach we are solving this optimization problem in batch
mode, i.e., we assume that the complete data set is available for training. This is in contrast
to [6], where RBFs are sequentially placed based on a statistical test, or in [4], where the
RBFs are placed incrementally for streaming data. Note that [4] also employs the one-norm
in the optimization problem, but it is solved using the dual simplex algorithm rather
than gradient-based methods we use here. The optimization problem in Equation (3)
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is readily solved in Python, via PyTorch, which provides automatic differentiation and
optimization tools.

3. Numerical Results
3.1. Details of Implementation

Each scalar time series is mean-centered using values from the training data prior to
time-delay embedding.

We use PyTorch as a framework to implement the mixed-objective loss (3). PyTorch
provides a large collection of tools for a user to define arbitrary loss functions and opti-
mization techniques. We subclassed torch.nn.Module, allowing us to pass a collection
of parameters and save the history during the learning phase. Updates were found us-
ing torch.optim.SGD with learning rate 0.1 and sometimes enabling Nesterov momen-
tum, though we expect the details of these choices have no noticeable impact on our
downstream conclusions.

The entirety of input/output training data (X, y) with X ∈ Rn×N , y ∈ RN (N samples)
are given to the module in the training phase (in contrast to online learning). For larger time
series, we trained using simple uniform random batches of 5% of the training data on each
iteration. Unless stated otherwise, the objective is the one-step prediction for yn := xn+1
based on input Xn := (xn, xn−T , xn−2T).

3.2. Mackey–Glass Revisited

We begin our exploration of the sparse skew RBFs by solving the optimization problem
given by Equation (3) for various parameter configurations. For this first numerical exper-
iment, we use the Mackey–Glass chaotic time series, a standard for benchmarking RBF
algorithms [3]. We employ 1197 points time-delayed and embedded into three dimensions
to predict the next point. We used 800 points for training, 200 points for validation, and
reserved an additional 195 for testing. In all our experiments, the prediction accuracies on
training, validation, and test data were very similar, indicating no overfitting was taking
place. Note that our current goal is to explore the behavior of the proposed algorithm for
different parameters, rather than perform a head-to-head comparison with other algorithms.
This frees us to select the modeling set-up from scratch and not be bound to choices made
in other papers. Here we take T = 1.

It is useful to explore the sparsity behavior of the model as a function of the parameter
α; we select the values shown in Table 1. All the results in this paper used 50,000 epochs
for training. In Table 1, we see that, as expected, the number of skew RBFs with weight
|Wi| > 1e−3 decreases with increasing α. Interestingly, for α = 0.002, we see a sharp drop
in the absolute value of the weights. The resulting model requires only two RBFs and has
relatively low error. Note that we also saw similar behavior with model size nc = 20,100.

Table 1. This table shows the variability of the model order (number of numerically nonzero sRBF
weights) as a function of the sparsity parameter α.

Number of Centers = 50

Sparsity α ‖w‖1 Train Acc Val Acc RBFs

0 26.84 0.0013 0.0012 50
0.0001 19.47 0.0009 0.0007 50
0.002 2.14 0.0024 0.0021 2
0.01 1.66 0.0036 0.0033 1
0.1 1.28 0.0177 0.0169 1

In Figure 2, we plot the absolute values of the skew RBF expansion weights wi sorted
in decreasing order. We see how the distribution of weights is impacted by the sparsity
parameter with α = 0.002 versus α = 0. Here, with the sparsity parameter α = 0.002, the
model selects two optimal RBFs that produce an error of 0.0021 versus the 50 skew RBF
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model (with α = 0) that results in an error of 0.0012. Interestingly, the 1-norm penalized
model with α = 0.0001 still uses 50 skew RBFs but has the smallest error of all the models.
In Figure 3 (top), we plot the model prediction that uses 50 RBFs and α = 0. In contrast, in
Figure 3 (bottom) we see the results of an RBF with two basis functions approximating the
Mackey–Glass time series. The smaller model fails to capture the positive extreme values,
but only 2 skew RBFs are used in contrast to 50 skew RBFs.

Figure 2. The parameter α can be seen here to promote sparsity. On the left, α = 0.002 and the number
of required skew RBFs is 2. On the right, we take α = 0 and there is no sparsity and 50 skew RBFs are
used in the model. See Figure 3 for the corresponding predictions.

Figure 3. The one-step prediction (blue) of the Mackey–Glass time series (red). The first 800 points
are training data. For both simulations we take nc = 50. Top: as expected, with α = 0, the solution
of the optimization problem requires 50 skew basis functions. Bottom: with α = 0.002 the sparse
solution only uses 2 skew RBFs.

We remark that this approach differs from the benchmarking in [6], where noise was
added to the data and the mapping used a four-dimensional domain. The approach used
in [6] requires the presence of noise since the approach employs a noise test on the residuals.
Here we are using an optimization that uses all the available data. This is in contrast to
methods that build the model in a streaming fashion, i.e., online, adding one point at a time
as they become available [4,6].
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3.3. Mouse Telemetry Data

The collection of data here are the result of experiments on laboratory mice conducted
by the Andrews-Polymenis and Threadgill labs [7–9]. The broad question is to identify
mechanisms of tolerance and understand the variety of immune response to a few specific
diseases in mice. The time series are the result of surgically embedding a device which
tracks internal body temperature (degrees Celsius) and activity (physical movements)
sampled at 1/60 Hz (once per minute). Mice are left alone for approximately 7 days, then
infected, and then further observed for an additional 7–14 days before being euthanized.
We focus on the temperature time series here.

The process of numerically finding a zero-autocorrelation time to find a delay for
TDE leads us to a delay T = 4 ∼ 6 h. Alternatively, a theoretical argument for studying
autocorrelation of the monochromatic signal sin(2πt/τ) leads to guidance of choosing
T = τ/4, i.e., one-fourth of the period. Assuming mice exhibit circadian behavior (a period
of 24 h), this agrees with numerical studies and so we use T = 24/4 = 6 h. The training
process and results of this process are visualized in Figure 4.

Figure 4. (Left): Decay of loss during training and diagram of associated time series. The mean-
square error quickly saturates while one-norm of weight vector w slowly decays. Only a handful
of non-zero model centers ||w||0 persist past the first 1000 iterations. (Right): Approximate mean-
normalization is applied, followed by a delay (blue region) for TDE. The model is trained on three
days of data (green region). The original time series (red, dashed) and model prediction of the learned
model (solid purple) are shown. Pointwise prediction error of x(t) is shown beneath. Parameters:
α = 0.01, nc = 21, T = 360, l = 3.

3.4. Other Applications
3.4.1. Iterated Prediction

We study how our sRBF implementation can be directly interpreted and how it can be
applied to anomaly detection. One method of evaluating the success of the trained model
is to study iterated prediction rather than repeated one-step prediction. Given an initial
training set, the task is to repeatedly feed the output of the model as new input; e.g.,

f (xt, xt−T , xt−2T)→ x̂t+1 (7)

⇒ f (x̂t+1, xt−T+1, xt−2T+1)→ x̂t+2 (8)

⇒ . . . (9)

The broad question is to ask, “Did the model in fact learn the shape of my data?” The
answer may be yes quantitatively if the time series continues to have small prediction error
without further training or online learning applied. More holistically, we are interested in
whether the time series learns a (quasi)periodic shape by approaching a limit cycle. Figure 5
illustrates this idea with a noiseless sine wave. One-step prediction (red) is successful;
iterated prediction (purple) receives no further ground-truth, with some evidence towards
the existence of a limit cycle. Similar application with a mouse time series in Figure 5



Eng. Proc. 2023, 39, 93 6 of 8

(bottom) succeeds in one-step prediction, but the iterated prediction exhibits behavior akin
to an exponential decay to a fixed point.

1

0

1

x(t)

one-step

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
time

1

0

1

x(t)

continuation

1
0
1

x(t)

one-step

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
time

1
0
1

x(t)

continuation

Figure 5. Results illustrating how a trained sRBF model learns geometric structure. (Top): With
sin(t), a learned model leads to a limit cycle. (Bottom): Similar approach with noisy mouse data fails.
Parameters α = 0.01, nc = 21, l = 3. After training, both models decrease to 3 active centers.

3.4.2. Visualization of Trained sRBF Models

When the embedding dimension of a scalar time series is l = 2, we can reason about
and explain the model with the full set of learned parameters in Equation (2). Figure 6
illustrates this idea with one such mouse time-series model. Following the expectation
for L1 penalization in the training objective, we consider weights |wi| < 1e − 2 to be
numerically zero and then build the full function f : R2 → R in analogy to the single sRBF
illustrations in Figure 1. We emphasize careful interpretation with this figure. Red crosses
represent locations of sRBF centers, which may not directly align with local extrema due to
the asymmetry. Next, contour colors represents the value associated with the the prediction
for xt+1, which cannot be directly visualized in the plane here. Ideally, we would like to
understand how the learned model positions centers and shapes parameters to match the
embedded time series in R2 but requires subsequent visualization of time-series values. We
leave this for future work.
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Figure 6. Visualization of sRBF model trained with mouse time series embedded in dimension l = 2.
Red crosses mark sRBF centers, which may not be located with local maxima due to asymmetry.
Parameters: α = 0.01, nc = 21, l = 2.

3.4.3. Anomaly Detection

An important application area for time series modeling, especially with health data
such as these, is anomaly detection. An anomaly can signal need for treatment, adjustment,
intervention, etc. Additionally, it is important to carefully consider how to train such
a model and how to evaluate success (or failure) depending on the specific application.
Figure 7 illustrates these ideas with one such temperature time series. Here, the shaded
green region marks training data, which is assumed “nominal” or “healthy” data (and
in general requires knowledge of the application area). Square marks in darker shades
of green on the time series denote detected anomalies. The definition of an anomaly can
depend on the specific modeling approach; but often involves producing a scoring system
(some function which maps input data to [0, ∞) or [0, 1]) which can be thresholded to
produce a binary decision of “nominal” or “anomaly”. Ultimately, the threshold is a free
parameter, and one mediates between false positives and negatives based on the choice.
This figure illustrates two automated methods for choosing a threshold based on quantiles.
The more sensitive of the two shown is a decision based on a new pointwise prediction
error |x̂t+1 − xt+1| being greater than 99% of such errors in the training data. Increasing
this threshold reduces sensitivity but hopefully also reduces false positives (the meaning
of which is also dependent on the application). Anomaly detection remains challenging
without applying a full time-series analysis pipeline which denoises or directly models
noise, and we leave a more thorough investigation of the application of skew RBFs to this
task to future work.

36

37
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39

x

x(t)

anomalies
infection

0 1 2 3 4 5 6 7 8 9 10 11 12
time (days)

0

1

|x̃
i
−
x
i|

99.00%
99.99%

Figure 7. Anomaly detection based on thresholding error in one-step prediction |ŷ− xt+1| exceeding
a threshold of error built from training data.
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4. Conclusions

In summary, we have proposed an approach for computing reduced order skew RBF
approximations. This approach is complementary to others in the literature that seek to
construct a parsimonious fit with RBFs. This batch method approach is appealing for
its algorithmic simplicity. The fact that the number of required RBFs can be determined
by the steep drop in expansion weights makes it appealing for automatic model order
determination. In the future, it would be interesting to explore the annealing of the sparsity
coefficient during training.

We note that there has been a renewed interest in RBFs in view of the observation
that kernel methods, under certain circumstances, can be viewed as equivalent to deep
neural networks [10]. The use of a weighted Euclidean inner product may be viewed as a
featurization of the data, while the kernel expansion completes the data fitting. Thus, this
renewed attention to the optimization problems associated with radial basis functions may
be of broad interest.
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