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Abstract: Environmental demands around the world have led to an increasing interest in natural gas
due to its advantages over other hydrocarbons used in power generation, which has led to the search
for the best way to solve the transportation problem associated with this resource. In this paper, we
propose a methodology that allows us to address the non-convexity related to the Weymouth equation
that makes the optimization problem so difficult. The mentioned equation, in charge of relating the
flows through the pipelines and the pressures at the nodes, is characterized by having a discontinuity
in the form of a sign function. The proposal of this work is based on the use of Mathematical Programs
with Complementarity Constraints (MPCC) to achieve a good approximation since it allows make
certain continuous variables to behave as discrete variables in such a way that it is possible to avoid
having to pose a mixed integer programming problem and this one. This approach showed a smaller
approximation error (or at least equal) with other approximations used in the state of the art when
tested in three different networks: one of 8 nodes, one of 48 nodes tested in other related works, and
one of 63 nodes representing the Colombian natural gas transportation system.

Keywords: natural gas; Weymouth equation; discontinuous functions; MPCC

1. Introduction

Natural gas, as an energy source, has achieved great relevance worldwide in recent
years due to two fundamental causes: Firstly, it allows reliable supply and continuous
development supporting economic growth, which is highly related to energy consump-
tion [1]. Secondly, the low greenhouse gas emission of natural gas makes it attractive for
environmental care and sustainable development.

According to a study from 2020, the global demand for natural gas was 1788 billion
cubic meters (bcm) in the same year, and the 2040 projection reached 2142 bcm, despite the
new regulations for consumption decrease in Europe and the Middle East [2]. Particularly
for Latin American countries, constituting the largest consumers of domestic natural gas,
the statistics rise from 96 bcm in 2020 to 148 bcm in 2040. For most above countries, natural
gas must also counteract the reduction of hydroelectric generation during dry seasons
while supplying residential, commercial, and industrial demands [3]. Hence, there is a
need for natural gas systems that fully supply all kinds of demand at a minimal fuel.

In general, natural gas systems are composed of four fundamental elements: injection
fields (or re-gasification plants), providing the fuel at regulated pressure; gas pipelines,
transporting the gas from sender to receiver nodes; compressors, raising the input-to-output
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pressure; and end users, establishing the fuel demand. Several authors have proposed
different ways to model the above elements and their interconnections, thus supplying the
demand through optimization techniques [4]. Though the extensive work on each element,
the gas pipelines remain a rather complex modeling problem since the physical relationship
between the pressures at its ends and the flow through it, known as the Weymouth equation,
holds a sign function determining the flow direction. As a nonconvex and discontinuous
equality constraint, such a function poses a strong challenge in optimization [5].

The challenge imposed by the Weymouth equation promoted the development of opti-
mization approaches with mathematical complexities without compromising the computa-
tional cost [6]. The first family of approaches turned the signum function into a linear com-
bination with binary auxiliary variables yielding a mixed integer optimization problem [7].
Despite integrating discontinuities, mixed integer optimization problems present a signifi-
cant source of nonconvexities reducing the probability of reaching a global optimum [8].
Further, the computational complexity of mixed integer programming is considerably
larger than other optimization approaches [9]. As another solution, optimization through
heuristic algorithms straightforwardly deals with nonlinear constraints [10]. However,
their high sensitivity to initial conditions leads to suboptimal solutions [9]. Linearization
and convexification strategies relax the Weymouth constraint reducing the computational
complexity [11]. For instance, the binary auxiliary variables weigh piecewise linear func-
tions that approximate the nonlinearities [12]. Another linear approximation relies on the
Taylor series to replace nonlinear equations with a series of linear inequalities [13]. As an
example of relaxation through convexification, the Second-order cone (SOC) programming
introduces continuous and binary auxiliary variables and guarantees a global optimum on
the approximation [14]. More recently, a polynomial regression holding odd coefficients
approximates the Weymouth equation, its first and second derivative at the ends of a
predefined operating interval [15]. Despite the reduced complexity and compatibility with
conventional solvers, previous strategies result in Weymouth approximations that infringe
on physical pipeline behavior, some of them to a great extent.

For reducing approximation errors, this work formulates the Weymouth equation in
terms of mathematical programming with complementarity constraints (MPCC) that, in-
stead of imposing an equality constraint, solves an optimization problem. MPCC expresses
the signum function as an optimization problem with linearly constrained continuous
variables behaving as binary, with two advantages: Firstly, the gas transport optimization
avoids solving a complex mixed integer problem [16]. Secondly, MPCC not only constrains
the original problem, but also minimizes the Weymouth approximation error.

The paper agenda is as follows: Section 2 describes both the objective function and
constraints in the optimization problem. Section 3 proposes the problem solution using
MPCC for modeling the Weymouth equation. Section 4 compares proposed MPCC against
three Weymouth approximation approaches for 8-node, 48-node, and 63-node networks,
the latter a case study of the Colombian gas transportation system. Finally, Section 5
concludes with the main findings and proposes future work.

2. Problem Formulation for Natural Gas Transport

The natural gas transmission network can be represented as a directed graph G = (N ,E),
where the set of verticesN corresponds to the system nodes. The nodes with gas injection are
known as wells, denoted byW ⊂ N , with an associated gas flow f w

I . The nodes demanding
gas are known as users, U ⊂ N , holding an individual cost for diversified loads. Due
to the operational rationing scenarios, this study considers a virtual flow f u

R at each user
accounting for the unsupplied gas demand. For simplicity, nodes cannot be wells and users
simultaneously, i.e.,W ∩U = ∅. The set of directed edges E = {(n, m) | n, m ∈ N} connect
node pairs through two kinds of transmission elements, pipelines T ⊂ E , and compressing
stations C ⊂ E . Note that edges must necessarily correspond to either a pipeline or a
compressor, that is, T ∪ C = E ,T ∩ C = ∅. Since gas pipelines admit bidirectional flow
f t
T : ∀t ∈ T , the edge direction is arbitrarily chosen, being f t

T positive when flowing in the
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chosen direction and negative otherwise. For gas flow through compressors f c
T : ∀c ∈ C, the

values must always be positive, as bi-directional stations are not considered.
Since the objective of natural gas transport is supplying the user’s demand at the

lowest cost, the optimization problem in Equation (1) takes place by including the following
operation costs: Cw

I for injecting gas into the system by production wells, Ct
T for pipeline

transportation, Cc
T for pressure boosting by compressing stations, and Cu

R for unsupplied
demand penalties. The set F = { f w

I , f t
T , f c

T , f ni
R } gathers all flows as decision variables for

the optimization problem. Hence, each term in the summation becomes a function of the
number of natural gas units used in its respective element.

min
F ∑

w∈W
Cw

I f w
I + ∑

t∈T
Ct

T f t
T + ∑

c∈C
Cc

T f c
T + ∑

u∈U
Cu

R f u
R (1)

To mathematically model the technical limits and the physical behavior, the optimiza-
tion problem objective function considers the following constraints: Equation (2) limits
the flow injected by the production wells to its technical maximum/minimum injection
capacity Fw

I /Fw
I . Equation (3) truncates the pipeline capacity at the structural maximum

Ft
T and allows bidirectional flows. Equation (4) considers the maximum compression

through the output-to-input pressure ratio βc, resulting in a linear inequality constraint.
Pn and Pn technically bound node pressures pn in Equation (5). Regarding the rationing,
Equation (6) limits the unsupplied demand between the desired zero and the respective
user demand Fu

D. Finally, two equalities guarantee the physical behavior of the gas in the
system. Equation (7), termed nodal gas balance, linearly matches each node’s injected with
ejected gas. The Weymouth equality in Equation (8) ties the pressure at two nodes with the
flow through the pipeline connecting them using a structural constant Kij. Particularly, the
Weymouth constraint is nonlinear, nonconvex, and disjunctive due to the sign function.

Fw
I ≤ f w

I ≤ Fw
I , ∀ w ∈ W , (2)

−Ft
T ≤ f t

T ≤ Ft
T , ∀ t ∈ T , (3)

pm ≤ βc pn, ∀c = (n, m) ∈ C, (4)

Pn ≤ pn ≤ Pn, ∀ n ∈ N , (5)

0 ≤ f u
R ≤ Fu

D, ∀ u ∈ U , (6)

∑
m:(m,n)∈E

f m = ∑
m′ :(n,m′)∈E

f m′ , ∀ n, m, m′ ∈ N , (7)

sgn( f t
T)( f t

T)
2 = Kij(p2

i − p2
j ), ∀t = (n, m) ∈ T (8)

3. Problem Solution Using Complementarity Constraints for Nonconvex Functions

The sign function in Section 2 poses a challenge for conventional optimization ap-
proaches due to its non-derivability, non-linearity, and nonconvexity. This work proposes to
deal with such a challenge using the mathematical technique of Mathematical Programs with
Complementarity Constraints (MPCC). Complementarity refers to a relationship between
variables where one or both must be at their bound, modeling mutually exclusive situations
without the need for binary variables. Here, MPCC turns the discontinuous sign function
into bounded continuous variables resulting from the optimization problem with the com-
plementarity constraints in Equations (9) to (14). The Equations (9) to (14) indicate that when
f t
T is positive, f+ will be positive and equal in magnitude to f t

T , while f− would necessarily
be zero. Otherwise, when f t

T is negative, it will be f− that takes the value in magnitude
of the transport flow of interest and f+ that adjusts its value to zero. The Equation (14), in
either of the two cases above, guarantees that the variable y takes the value of 1 if the sign
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of f t
T is positive or −1 if the sign of f t

T is negative. Note that the proposed solution avoids
the formulation of conventional mixed integer optimization approaches [17].

min
y

− y f t
T (9)

s.t. f t
T = f+ − f− (10)

f+ ≥ 0 (11)

f− ≥ 0 (12)

f+ f− = 0 (13)

f+(1− y) + f−(1 + y) = 0 (14)

To solve the resulting optimization problem, we resorted to the IPOPT solver, which
is characterized by its use of a Primal-Dual Barrier Approach. This method works by
converting the model into an unconstrained optimization problem, using a barrier function
to penalize solutions that do not satisfy the constraints of the original problem. This
algorithm allows convergence starting from poor initial points and incorporates a line-
search filter, an important feature that helps to ensure progress towards a solution at each
step by using the Armijo condition as a criterion. This condition requires that the objective
function decreases by a sufficient amount relative to the step length. If the step is not
sufficiently successful, the line-search filter reduces the step length and the algorithm
takes a smaller step [18]. The main feature of this algorithm is that it finds the solution
to the problem by moving through the feasible solution region using a central path [19].
Additionaly this solver incorporates a variation of the original algorithm that solves both
the primal and dual problems, which has shown superior performance compared to the
standard version of the algorithm in practice [20].

4. Case Study

This work tests the efficiency of the proposed approach in three cases: A small sys-
tem with one closed trajectory, a 48-node system with several closed trajectories, and a
63-node system representing the Colombian natural gas system. All cases were tested in
Google Colab notebooks using the Gekko optimization tool [21] to implement the internal
complementarity constraints for the sign function.

To validate the performance of the solution obtained by the proposed approach, it was
compared with three approaches used in the state of the art to solve this same problem:
replacing the equality constraint with a series of linear inequalities using the Taylor Series
method [13], convexifying the problem using second-order cone programming (SOC) [14]
and approximating the equation in a defined interval using a polynomial of degree five
with odd coefficients only [15].

To compare the proposal presented in this study with other approximations, it was
decided to take the solution obtained with each solver and evaluate it in the Weymouth
equation equated to zero, so quantifying the approximation error.

4.1. 8-Node Natural Gas System

In the first instance, an 8-node database (Figure 1) was used for the study for two
main reasons. The first is that being a small network, it presented an additional facility
when corroborating the results. Despite the above, this network had a closed trajectory, an
additional difficulty since it required the use of bidirectional pipelines, making it a very
good starting point for the different approaches used.
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Figure 1. 8-node natural gas system.

The optimization problem was solved using each of the four approaches. None of
the results obtained had to reach the point of rationing the hydrocarbon and, as shown
in the Table 1, in three of them the result of the objective function was the same. Apart
from the value of the objective function, which represents the operating cost of the system,
in this study, it is of interest to know how good the solutions achieved with each of the
approaches are. To understand it better, it can be seen that each of the pipelines has an
associated equation of form Equation (8), so if the respective pressures and flows of these
elements obtained when the problem was solved are taken, each Weymouth equation can
be evaluated in order to quantify the amount of error in the approximation.

Table 1. Value of the objective function using each approach in each system.

System Taylor SOC Polynomial MPCC

8-node 194,133 194,133 229,169 194,168

48-node 11,095,000 11,095,000 11,099,349 13,121,240

63-node 4,517,783 4,517,783 - 4,704,223

The boxplots in Figure 2 contain the resulting values when the solution obtained
by each of the respective approximations was evaluated in the equation equal to zero,
i.e., the value to which it should ideally tend. Here a paired test yielded that the MPCC
approximation gave the smallest error.

Taylor SOC Poly MPCC
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Figure 2. Absolute approximation error in Weymouth equation for the 8 nodes network. The boxplots
illustrate the error dispersion for each considered approach. The whiskers bound the error first and
third quartiles, and the circles denote outlying approximation errors.
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4.2. 48-Node Natural Gas System

The second tested case is the 48-node database used by [22], among other authors in
state of the art. This network, which can be seen in Figure 3, is composed of 9 injection
fields, 8 compressor stations, and 22 gas demand nodes. This system was selected since its
structure has several loops, which represent an additional difficulty in the solution of the
problem and therefore it is a good way to test the robustness of the tested models.

Figure 3. 48-node natural gas system [23].

Unlike the previous system, in this case, all approaches performed quite similarly in
terms of the value of the objective function. Table 1 shows how the difference between
approaches was practically negligible. Despite the above, this behavior was not maintained
in the results obtained when the errors of the approaches were compared. As seen in
Figure 4, the approximation using the Taylor series presented the highest error, followed
by the polynomial approximation. In this case, the error presented by the Taylor series
and MPCC was quite similar, being a statistical test the one that determined that the latter
approach had a significantly lower error.

In this case, it is necessary to highlight the increase in error values with respect to
those obtained in the 8-node network due to the difference between the systems. The
fact of not only having many more elements but also connecting them in more complex
configurations is a sample of how the difficulty of this type of optimization problem has
quite a high scalability, forcing it to have sufficiently robust models for its solution.

4.3. 63-Node Natural Gas System

The third network corresponds to the Colombian natural gas injection and trans-
portation system illustrated in Figure 5. This system is composed of 13 injection fields,
14 compressor stations, and 26 consumer nodes. Despite being radial, this system considers
gas pipelines with bidirectional flows since the change of gas demanded throughout the
year is related to the country’s meteorology. For this case, the system introduced in [15] was
updated in the Atlantic coast region by grouping elements and fixing the new operational
constraints. These changes resulted in a new system with a total of 63 nodes.

Figure 6 presents the absolute errors in approximating the Weymouth equation for the
63-node system. The first observation from the results is that the polynomial approach fails
to converge, probably because the optimal flows and pressures fall outside the Weymouth
approximation interval. Secondly, the errors for this system are lower than those for the
previous one, mainly due to lacking closed trajectories that alleviate the complexity. In
terms of performance, despite reaching a cost function value about 4% more expensive,
the proposed MPCC-based solution significantly decreases the error on the Weymouth
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approximation compared to Taylor and SOC. Lastly, it is worth noting that MPCC yields two
outlier errors, almost five orders larger than the average. After a manual exploration, we
found the same outlying errors in Taylor and SOC at two pipelines between compressors.
We hypothesize that the pressures at the ends and the flow through the pipe are over-
constrained, so the solvers only accomplish the linear relationships of compressing ratios
and gas balance instead of the complex Weymouth equation. Therefore, the MPCC-based
solution provides more realistic gas transportation solutions due to a systematical reduction
of Weymouth approximation errors.

Taylor SOC Poly MPCC
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r

Figure 4. Absolute approximation error in Weymouth equation for the 48 nodes network. The
boxplots illustrate the error dispersion for each considered approach. The whiskers bound the error
first and third quartiles, and the circles denote outlying approximation errors.

Figure 5. 63-node natural gas system (Colombian system).
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Figure 6. Absolute approximation error in Weymouth equation for the Colombian network. The
boxplots illustrate the error dispersion for each considered approach. The whiskers bound the error
first and third quartiles, and the circles denote outlying approximation errors.

5. Concluding Remarks and Future Work

This work proposed a solution for dealing with the Weymouth equation within the
framework of natural gas transportation through complementarity constraints. MPCC
formulated the nonconvex signum function in the Weymouth equation in terms of continu-
ous bounded variables instead of binary ones, avoiding mixed integer programming. The
proposed solution was contrasted against Taylor series, SOC, and polynomial approaches
regarding the absolute approximation error at three study cases: An 8-node network with
one closed trajectory, a 48-node network with multiple closed trajectories, and a 63-node
radial network representing the Colombian gas transportation system. For experimental
integrity, the IPOPT library solved all programming problems for all contrasted approaches.
Experimental results evidenced that the proposed MPCC solution attained an approxima-
tion error smaller than contrasted approaches. Therefore, approximating the Weymouth
equation using MPCC yielded pressures and flows satisfying the technical limits and
physical behavior demanded by natural gas transportation problems.

For future work, we devise the following research directions. Firstly, the problem
formulation will be extended to stochastic programming for natural gas transportation sce-
narios without a deterministic demand. Such scenarios are common for power generation
that relies heavily on hydroelectric inputs and thermal power plants to fulfill the remaining
demand. Secondly, a study of potential expansion plans must be conducted by evaluating
various investment options in a robust and reliable solution for gas optimization problems.
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