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Abstract: There have been numerous advances in financial time series forecasting in recent years.
Most of them use deep learning techniques. We identified 15 outstanding papers that have been pub-
lished in the last seven years and have tried to prove the superiority of their approach to forecasting
one-dimensional financial time series using deep learning techniques. In order to objectively compare
these approaches, we analysed the proposed statistical models and then reviewed and reproduced
them. The models were trained to predict, one day in advance, the value of 29 indices and the stock
and commodity prices over five different time periods (from 2007 to 2022), with 4 in-sample years and
1 out-of-sample year. Our findings indicated that, first of all, most of these approaches do not beat
the naive approach, and only some barely beat it. Most of the researchers did not provide enough
data necessary to fully replicate the approach, not to mention the codes. We provide a set of practical
recommendations of when to use which models based on the data sample that we provide.

Keywords: financial forecast; deep learning; reproducibility; forecast comparison

1. Introduction

Many researchers have been struggling for decades to understand how the markets
behave [1–3]. Some argue that the markets are unpredictable due to the Efficient Market
Hypothesis (EMH), stating that, in the short term, financial time series follow a random
walk. In contrast, there is a large number of behavioural economists that do not agree
with such a statement, believing that investors do not always behave rationally [4,5]. They
suggest that the market “can be beaten”, because cognitive biases, such as overconfidence
and herd behaviour or risk aversion, exist. One is certain and empirically confirmed:
investors are winning on the market—mostly because they are ahead of their “brothers
in arms”.

Generally, there are two main approaches that are used to predict the financial markets:
technical and fundamental analysis. Technical analysis approaches focus widely on build-
ing the predictions based on the past movements or changes of the stock market [6,7]. On
the other hand, fundamental analysis considers the information about the economic status
of the company underlying the asset, news, social media, financial reports, etc. Lately, the
most emphasis is put on employing machine or deep learning methods to combine these
tasks, due to their ability to find and quantify nonlinear correlations very easily [8–12], but
researchers are still struggling to provide an objective way to compare the results. There has
been a massive progress in artificial intelligence approaches implemented in the financial
area, mainly portfolio optimisation, time series prediction, agent-based modelling, etc.
A large number of scientists also agree that the origin of successful prediction lies not only
in the data related to the predicted object, but also in finding additional data sources [13–15].
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Systematic reviews [16,17] show that there have been more than 125 new approaches to
time series prediction in the past few years. Many researchers claim to provide better and
better-performing models; however, no consensus exists on the best approach yet. The
availability of numerous model options in the market without a clear indication of their
costs can result in a dilemma known as “choice overload” [18]. This can lead to a situation
where one may end up making no choice at all.

When it comes to financial time series, there are also many different areas that can
be covered by deep learning. We can see different feature sets being used in the model,
either univariate modelling or enriching the data with additional supporting data sources.
There is also emerging work using text mining, sentiment analysis, or social media analysis
in feature sets. The target variable can also change: it can predict stock prices, indices,
commodities, or cryptocurrencies. Some researchers are also looking at volatility and trend
forecasting. As far as models are concerned, the horizon is even broader: from simple
neural networks, to long-term memory (LSTM) architectures, to sophisticated state-of-the-
art approaches such as graph networks or generative adversarial networks. Finally, the
prediction horizon is also a point of contention: Are predictions longer than one time step
forward of good quality, and what should it be—a regression task or a classification task?

This abundance of different possibilities and options generates a large grid of ap-
proaches that cannot be compared with each other solely on the basis of the article pro-
vided. There are three main problems when it comes to comparing approaches to predicting
financial time series in a deep learning setting:

• Different data, timespans, and metrics used in every experiment;
• Lack of publicly available codes supporting the experiment’s execution;
• Lack of a detailed architecture and hyperparameters that are necessary for the experi-

ment’s reproduction.

The first problem stems from the lack of a single stock framework, indexes, or any
other data samples to objectively test the effectiveness of the models. The usual duo is the
S&P 500 and the SSE Composite, according to [17], accounting for 80% of the papers they
reviewed. However, a large subset of researchers use single stock quotes or commodity
prices. When models are supplemented with additional data, e.g., enriched with text-
mining techniques, such datasets are not publicly available (only 10% of the reviewed
papers in [17]). In time series problems, it is not only about the data, but also about the time
sample to be used: different results will be obtained for models trained in 2019 and 2020, or
a different training sample or lookback time horizon: different results will be obtained for
models trained in 1 year and 5 years. In terms of metrics, there is some minor consensus
there: for regression, the common metric is the mean absolute error; for classification, it is
the accuracy. However, this consensus does not mean that every researcher provides a grid
of “must have” metrics, but rather selects a few of the most-common ones.

The second problem stems from the reluctance of researchers to publish the code they
used to train the models. Only three of the papers reviewed in this thesis were taken from
publicly available sources such as GitHub. The lack of code reduces the usefulness of
the work, as the cost of selection is increased by the time it takes to implement. Another
disadvantage is the discrepancy between the implemented solution and the one presented
in the original work (e.g., different versions of the base packages).

A final problem is the poor description of the approach along with the hyperparame-
ters that are used to train the model. Typically, in time series deep learning, we can expect
the following hyperparameters (depending on the approach implemented): number of
training epochs, learning rate, optimiser type, batch size, and number of backward steps
(number of time series lags). However, in the works mentioned by [16,17], there are huge
gaps in the description of the training approach. Most of the approaches lack a concrete
specification of the architecture used (number of neurons, number of layers, activation
functions, etc.) or lack parameters. Researchers usually stop at explaining that the architec-
ture used is LSTM or NN. Additionally, only one paper mentions the random seed value,
which is also necessary to fully reproduce the model weights.
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To overcome these problems, we decided to carry out an extensive practical repro-
duction of fifteen papers that are listed in [16,17]. We rebuilt each approach that was
reported in a duplicate article, taking into account the hyperparameters that were reported.
Where important parameters were missing (such as the number of neurons, the optimiser,
the learning rate, or the number of training epochs), we supplemented with the average
of the remaining, non-missing articles. We compared these models with simple statisti-
cal approaches—naive forecasting, ARIMA, and exponential smoothing. The result was
18 forecasts over five different time periods, resulting in 90 forecasts, run for 29 different
types of financial data, including indices, equities, and commodities. We compared mod-
els using the mean absolute percentage error (MAPE), mean-squared error (MSE), mean
absolute error (MAE), and mean absolute error compared in the first time step only. We
propose a data, time, and model framework to run when performing time series problems
with deep learning.

2. Methods

We reviewed 15 different deep learning models that have been mentioned in recent
literature reviews on financial time series prediction. We focused on selecting the broadest
possible sample of different deep learning models. In this section, we describe them briefly.
To limit the size of the article, we refer the reader to the original papers for more details on
the individual models:

1. A hybrid attention-based EMD-LSTM model [19]:
The paper proposes a two-stage model for time series prediction, combining em-
pirical mode decomposition (EMD) and attention-based long short-term memory
(LSTM-ATTE). EMD was used to decompose the time series into a few inherent mode
functions (IMFs), which were then taken as the input to LSTM-ATTE for prediction.
They used the SSE Composite index to run the predictions. The attention mechanism
was used to extract the input features of the IMF and improve the accuracy of the
prediction. Researchers have evaluated the model’s predictive quality using linear re-
gression analysis of the stock market index and compared it to other models, showing
better prediction accuracy.

2. Empirical. mode decomposition factorisation neural network (EMD2FNN) model [20]:
A simpler approach proposed by [20], includes feeding the IMFs of some time series
into a factorisation neural network, concatenating all the IMFs into a single vector.
The data used for the experiment were: the SSE Composite, NASDAQ, and S&P
500. The authors performed a thorough comparison between the proposed method
and other neural network models, comparing the mean absolute error (MAE) and
root-mean-squared error (RMSE).

3. Neural network ensemble [21]:
The paper describes a deep neural network ensemble that aims to predict the SSE
Composite and SZSE (Shenzhen) Component. The model consists of a set of neural
networks that were trained using open, high, low, close (OHLC) data. Every neural
network takes the last few days of such data, flattened to a vector form. Later, bagging
is used to combine these networks and reduce the generalisation error.

4. Wavelet denoising long short-term memory model [22]:
The proposed model in this paper is a combination of real-time wavelet denoising
and the LSTM neural network. The wavelet denoising was used to separate signals
from noise in the stock data and was then taken as the input to the LSTM model. The
authors conducted an experiment on several indexes, including the SSE, SZSE, and
NIKKEI, using the mean absolute percentage error (MAPE) as a metric.

5. Dual-stage attention-based recurrent neural network [23]:
This paper proposes a two-stage attention-based recurrent neural network (DA-RNN)
model for time series prediction. The DA-RNN model uses an input attention mecha-
nism in the first stage to extract the relevant driving series at each time step based on
the previous hidden state of the encoder. In the second stage, the temporal attention
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mechanism is used to select the relevant hidden encoder states at all time steps. The
experiment was conducted on the SML 2010 and NASDAQ datasets and showed that
the model outperformed state-of-the-art time series prediction methods. The metrics
used were the MAE, MAPE, and RMSE.

6. Bidirectional LSTM [24]:
This paper compared the performance of the bidirectional LSTM (BiLSTM) and unidi-
rectional LSTM models. BiLSTM is able to traverse the input data twice (left to right
and right to left) and, thus, has additional training capabilities. The study showed that
BiLSTM-based modelling offers better predictions than regular LSTM-based models
and outperformed the ARIMA and LSTM models. However, BiLSTM models reach
equilibrium much slower than LSTM-based models. The experiment was carried out
on several indices and stocks, including the Nikkei and NASDAQ, as well as the daily
IBM share price and compared using RMSE.

7. Multi-scale. recurrent convolutional neural network [25]:
The proposed method is a multi-scale temporal dependent recurrent convolutional
neural network (MSTD-RCNN). The method utilises convolutional units to extract
features on different time scales (daily, weekly, monthly) and a recurrent neural
network (RNN) to capture the temporal dependency (TD) and complementarity
across different scales of financial time series. The proposed method was evaluated
on three financial time series datasets from the Chinese stock market and achieved
state-of-the-art performance in trend classification and simulated trading compared
to other baseline models.

8. Time-weighted. LSTM [26]:
This paper proposes a novel approach to predicting stock market trends by adding
a time attribute to stock market data to improve prediction accuracy. The approach
involves assigning weights to the data according to their temporal proximity and
using formal stock market trend definitions. The approach also uses a custom long
short-term memory (LSTM) network to discover temporal relationships in the data.
The results showed that the proposed approach outperformed other models and can
be generalised to other stock indices, achieving 83.91% accuracy in a test with the CSI
300 index.

9. ModAugNet [27]:
The paper proposes a data augmentation approach for stock market index forecasting
through the ModAugNet framework, which consists of a fitting-prevention LSTM
module and a prediction LSTM module. The prediction module is a simple LSTM
network that is fit based only on the historical data on the index realised prices. The
prevention module builds on that by adding a set of regressors that are other indexes,
highly correlated with the predicted one. Using the MSE, MAE, and MAPE on the
S&P500 and KOSPI200, the authors proved the validity of their solution.

10. State frequency memory (SFM) [28]:
The state frequency memory (SFM) model is the twin of the LSTM model. The SFM
model was inspired by the discrete Fourier transform (DFT) and was designed to
capture multi-frequency trading patterns from past market data to make long- and
short-term predictions over time. The model decomposes the latent states of memory
cells into multiple frequency components, where each component models a specific
frequency of the latent trading pattern underlying stock price fluctuations. The model
then predicts future share prices by combining these frequency components. The
authors tested their solution of 50 different stocks in 10 industries using the MSE.

11. Convolutional neural-network-enhanced support vector machine [29]:
The proposed model in this text is a convolutional neural network (CNN), which is
supposed to discover features in the data, which are later passed into the support
vector machine (SVM) model. The text then discusses the influence of the model
parameters on the prediction results. The model was evaluated empirically on the
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Hong Kong Hang Seng Index using the RMSE, and the results showed that both
models are feasible and effective.

12. Generative adversarial network [30]:
The generative adversarial network (GAN) in this paper consists of two main com-
ponents: a discriminator and a generator. The discriminator was designed using a
simple feed-forward neural network and is responsible for distinguishing real stock
market data from generated data. The generator, on the other hand, was built using an
LSTM and is responsible for generating data with the same distribution as the actual
stock market data. The model was trained on daily data from the S&P500 index and
several other stocks for a wide range of trading days. The LSTM generator learns the
distribution of the stock data and generates new data, which are then fed to the MLP
discriminator. The discriminator learns to distinguish between the actual stock data
and the data generated by the generator. The authors tested their model on several
time series, including the S&P 500 and stocks such as IBM or MSFT.

13. Long short-term memory and gated recurrent unit models [31]:
The paper proposes a hybrid model that combines the long short-term memory
(LSTM) and gated recurrent unit (GRU) networks. The authors used the S&P 500
historical time series data and evaluated the model using metrics such as the MSE
and MAPE on the S&P500.

14. CNN and bi-directional LSTM model [32]:
The paper proposes a model combining multiple pipelines of convolutional neural
network (CNN) and bidirectional long short-term memory (LSTM) units. The model
improved the prediction performance by 9% compared to a single pipelined deep
learning model and by more than six-times compared to a support vector machine
regressor model on the S&P 500. The paper also illustrates the improvement in the
prediction accuracy while minimising overfitting by presenting several variants of
multi- and single-pipelined deep learning models based on different CNN kernel
sizes and number of bidirectional LSTM units.

15. Tim convolution (TC) LSTM model [33]:
The authors of this paper propose time convolution long short-term memory (TC-
LSTM), employing convolutional neural networks (CNNs) to capture long-term fluc-
tuation features in the stock prices and combining this with LSTM. This combination
allows the model to capture both the long-term dependencies of stock prices, as
well as the overall change pattern. The authors compared the performance of their
TC-LSTM model to three baseline models on 50 stocks from the SSE 50, as well as the
index itself. They showed that their model outperformed the others in terms of the
mean-squared error.

The proposed architectures were build from scratch in pytorch [34], based on the
explanation provided in the article itself. In addition to these models, to provide a more
thorough comparison, we also utilised the ARIMA model (tuned, best parameters on the
training sample), the naive approach (prediction as: Yt = Yt−1), and exponential smoothing.

The hyperparameters derived based on the text or the publicly available codes are
presented in Table A1. All missing parameters were filled in with either the mean of other
parameters or the mode.

3. Data and Methodology

We provide a more comprehensive background of the developed models we propose
to broaden the range of the time series on which the model is tested. The data used in
this study were taken from the following financial types: indexes, currency pairs, stocks,
cryptocurrencies, and commodities. The purpose of including a comprehensive range of
financial types was to provide a comprehensive comparison of the models’ performance.

The following time series were included in this study for analysis:
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• Indexes: WIG20 (PL), S&P 500 (US), NASDAQ (US), Dow Jones Industrial (US), FTSE
250 (UK), Nikkei 225 (JP), DJI (USA), KOSPI 50 (KR), SSE Composite (CN), DAX 40
(DE), CAC40 (FR);

• Currency pairs: EURPLN, PLNGBP, USDPLN, EURUSD, EURGBP, USDGBP, CHFGBP,
CHFUSD, EURCHF, PLNCHF;

• Stocks: AAPL, META, AMZN, TSLA, GOOG, NFLX;
• Cryptocurrencies: BTCUSD;
• Commodities: XAUUSD.

For each of these time series, we identified five periods in which we made predictions:

• 2016–2020;
• 2013–2017;
• 2007–2011;
• 2009–2013;
• 2018–2022.

Each period consisted of 4 years of training and 1 year of day-ahead predictions
(ca. 250 testing time steps) without re-training the model. The periods differed significantly
between each other due to the different levels of variability between the training and
test trials.

The data were preprocessed by performing normalisation on the input features using
the MinMaxScaler function from the Scikit-learn library [35]. The normalised data were
then split into training and test sets with a ratio of 4 years:1 year, respectively. The model
was then trained using only the training sample, and predictions were made for every time
step in the testing sample.

The evaluation metrics were used to compare the performance of each model across
the different financial types and time series. The best-performing model was selected based
on the lowest values of:

• MSE = 1
n ∑n

t=1(Yt − Ŷt)2;

• RMSE =
√

1
n ∑n

t=1(Yt − Ŷt)2;

• MAPE = 1
n ∑n

t=1

∣∣∣Yt−Ŷt
Yt

∣∣∣× 100%.

Yt is the actual value at time t; Ŷt is the predicted value at time t; n is the total number
of time periods.

Finally, the results were analysed to identify patterns and insights that could help
improve the accuracy of predictions in future studies. We also provide the MAPEs at the
first time step of testing (i.e., calculated for t = 1) to provide a quality metric for the trained
model with the full set of information, i.e., to provide a metric that would allow the quality
of the model to be calculated in the short term.

4. Results

The results are presented in Table 1. To be concise, we only report the MAPE in this
paper (for the MAE, MSE, or detailed predictions, please contact the authors directly). In
bold, we can notice the best (lowest) MAPE for every financial time series.

We can see that the best model was the naive approach. This was mainly due to the
fact that the quality of models tends to deteriorate if they are not retrained after a certain
period of time; however, we wanted to keep the reproduction of the models as close to the
original as possible. Furthermore, the researchers in their original work also did not retrain
the model in the test sample (or mention doing so in any other way), nor did they compare
to statistical approaches.

When we leave out the statistical approaches, we can see a few approaches that
stand out (5, 6, 7, 9, 12, and 13). These models generally have MAPEs lower than five
percent. What these models have in common is either simple LSTM/RNN architectures
or sophisticated CNN operations, which increase the range of features. The best model
that achieved an average MAPE of 1.79% was the multi-scale recurrent convolutional
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neural network (Model 7). We believe that the surplus in prediction quality came from
the additional operations performed on the data (multi-scale CNN), which improved
the information processing. The second-best model was ModAugNet (Model 9), which
achieved a MAPE of 2.07%. This model relies heavily on the additional data sources that
are provided in training for a given time series. On the other hand, the worst model was
Model 11 using SVM after preprocessing the data from the SVM—52.24% MAPE.

From another perspective, the worst-performing financial time series was BTCUSD,
followed by TSLA, AAPL, and NFLX. These all achieved high returns over the time periods
studied, so what we believe is the reason for the deterioration was the inability of all models
to correctly identify and predict rapid price increases. We also observed that indices have
a roughly similar MAPE (5–6%), as do currency pairs (1–2%). Stocks, on the other hand,
have the highest MAPE of all financial time series (>10%).

Since we can clearly see that the models performed worse due to the lack of hy-
pertuning, we propose to run this procedure for each model training. However, such
an experiment will be computationally exhaustive (this experiment already consisted of
2610 model trainings), so some restrictions should be introduced. Furthermore, the testing
procedure was detached from how these models are used in reality. Time series models
should be trained daily to provide the best-possible fit based on the set of information
available at the time of prediction. In this case, the information set becomes smaller and
smaller with each prediction.

As a proof of this statement, we provide in Table 2 the MAPE results calculated for
the first testing time step. This metric allowed us to confirm that, in the short term, these
models are correct and better than the naive approach for each stock. Only for five series
was the statistical approach (exponential smoothing) better. Model 7 was still the best in
7 of the remaining 24 cases. Several other models came in first (Model 1 and Model 13)
proving that the performance of the models deteriorates over time.
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Table 1. An average of the mean absolute percentage error for every model and every financial time series calculated over five different timespans.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ARIMA naive ExpSmooth

AAPL 10.33 19.98 63.42 10.77 5.55 5.53 2.48 7.12 1.69 7.32 56.94 4.47 4.32 9.74 8.36 1.7 1.42 1.57
AMZN 14.57 19.21 64.15 12.36 6.78 7.01 2.94 12.11 2.82 6.08 31.67 4.98 3.83 14.8 14.73 1.88 1.61 1.62

BTCUSD 19.74 41.24 72.07 22.48 17.23 25.6 5.38 24.5 11.3 19.8 1110.76 12.46 17.05 36.32 32.05 3.81 3.17 3.37
CHFGBP 3.03 5.16 18.39 1.73 0.99 1.02 0.7 2.26 0.58 4.48 6.44 0.67 0.91 2.82 1.05 0.49 0.46 0.46
CHFUSD 1.7 4.69 9.97 2.9 1.42 1.07 0.56 1.3 0.79 1.23 7.74 0.73 0.79 1.96 1.24 0.51 0.44 0.45
EURCHF 1.78 2.76 6.66 1.49 1.2 0.84 0.57 1.15 0.39 1.47 4.6 0.55 0.57 3.21 2.2 0.35 0.31 0.32
EURGBP 1.28 2.42 11.31 1.02 0.83 0.58 0.52 0.64 0.39 0.6 1.86 0.45 0.68 1.61 1.0 0.42 0.38 0.39
EURPLN 0.85 2.01 8.39 1.12 0.65 0.6 0.47 0.85 0.39 1.04 1.74 0.41 0.49 1.41 0.65 0.41 0.34 0.36
EURUSD 1.35 2.95 6.55 1.86 1.18 1.03 0.67 1.07 1.24 1.13 2.28 0.68 0.83 2.27 1.82 0.49 0.43 0.43

GOOG 10.0 9.53 44.2 7.98 4.64 4.42 2.91 15.73 2.28 5.85 9.43 4.04 6.99 7.53 9.93 2.08 1.77 1.97
META 23.0 18.65 34.98 14.39 7.06 6.01 3.19 14.99 2.48 8.14 15.44 5.51 7.69 15.65 17.61 2.98 2.41 1.90
NFLX 18.02 29.01 61.32 16.19 8.92 7.86 5.33 28.51 3.46 9.9 33.45 5.55 5.73 21.48 21.07 2.86 2.26 2.28

PLNCHF 1.86 5.54 6.31 2.61 1.92 2.0 0.78 2.3 0.56 2.9 6.93 1.0 1.14 3.94 2.73 0.54 0.51 0.69
PLNGBP 0.61 2.04 10.86 1.27 1.01 0.73 0.7 1.28 0.55 0.78 2.28 0.61 0.83 2.11 1.38 0.54 0.51 0.56

TSLA 17.76 33.73 71.83 26.83 14.56 23.22 4.03 27.29 14.78 21.81 65.77 16.47 13.34 34.94 23.61 3.47 2.98 2.48
USDGBP 2.3 3.47 13.73 1.81 0.89 0.88 0.71 1.18 0.47 0.73 2.0 0.56 0.97 1.81 1.04 0.48 0.45 0.46
USDPLN 1.82 5.01 16.22 2.96 1.64 1.72 0.77 1.59 0.7 2.09 3.46 0.84 1.26 3.12 1.51 0.73 0.61 0.59
XAUUSD 5.76 8.55 28.57 5.53 3.14 3.55 1.42 2.43 1.35 4.67 13.33 1.74 1.74 6.74 3.45 0.94 0.79 0.90

CAC 2.41 7.19 26.6 2.51 2.18 1.93 1.52 3.03 1.0 2.11 6.19 1.27 2.08 4.75 3.49 1.21 0.99 0.92
DAX 3.66 8.89 34.69 3.77 2.7 2.71 1.62 5.21 1.07 2.14 6.01 1.64 2.5 4.93 4.32 1.2 0.98 3.63
DJC 4.64 8.2 38.77 4.07 3.52 2.67 1.28 3.52 1.16 2.27 11.45 2.1 1.92 6.74 5.92 1.0 0.86 1.22
DJI 5.85 9.01 38.47 3.09 2.51 2.21 1.48 4.65 1.12 2.42 15.79 2.01 1.79 4.15 5.91 0.97 0.83 1.20

FTM 4.55 9.58 33.35 3.47 3.42 3.01 1.38 3.92 1.04 3.38 16.33 2.05 2.04 5.57 3.49 0.98 0.84 0.96
KOSPI 3.54 8.65 31.47 4.7 2.06 2.83 1.75 2.85 1.15 2.28 5.59 1.41 2.36 4.28 4.09 1.03 0.88 1.11

NDX 7.77 11.68 49.29 7.26 3.99 4.65 2.2 7.07 1.47 4.84 34.68 3.04 3.47 8.89 7.94 1.25 1.07 24.63
NKX 3.75 10.5 29.97 4.8 3.05 4.19 2.14 3.69 2.59 3.06 10.39 1.55 2.97 8.44 4.03 1.18 1.01 0.58
SHC 1.71 7.52 19.43 2.26 1.76 1.24 1.15 3.39 0.86 1.33 6.3 0.97 1.59 3.38 2.21 0.94 0.77 0.78
SPX 4.86 8.05 40.44 4.91 3.44 2.95 1.63 6.66 1.21 4.66 18.57 2.07 2.38 7.43 5.64 1.04 0.89 1.21

WIG20 3.32 8.54 25.5 3.67 2.82 1.91 1.52 3.1 1.18 1.77 7.59 1.54 2.16 4.76 4.53 1.33 1.11 1.27
GOOG and META calculated for two forecasting horizons; TSLA and BTCUSD calculated for three forecasting horizons. Numbers in bold indicate minimum for a given timeseries.
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Table 2. An average of the mean absolute percentage error at the first predicted time step for every model and every financial time series calculated over five
different timespans.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ARIMA naive ExpSmooth

AAPL 6.64 16.68 62.55 3.97 3.31 2.91 1.65 2.96 2.04 1.69 10.48 2.99 1.98 6.37 5.80 2.16 2.03 1.90
AMZN 5.23 11.70 63.84 1.86 1.88 1.89 1.54 7.67 2.01 2.03 7.86 2.24 1.89 3.56 1.73 2.15 2.02 1.81

BTCUSD 15.14 26.29 73.84 8.68 9.68 11.37 4.49 10.38 3.34 2.91 9.83 4.65 7.26 15.16 10.13 4.11 3.29 3.21
CHFGBP 0.88 3.50 16.07 0.78 0.71 0.80 0.36 1.88 0.44 1.04 3.31 0.58 0.75 2.37 1.40 0.43 0.46 0.48
CHFUSD 0.80 4.36 9.62 2.53 0.37 0.51 0.44 0.79 0.47 0.58 3.42 0.53 0.28 0.91 0.33 0.40 0.41 0.42
EURCHF 0.57 2.76 4.44 0.51 0.54 0.25 0.28 0.58 0.12 0.26 3.48 0.20 0.18 1.92 1.61 0.16 0.14 0.17
EURGBP 0.85 2.61 9.11 0.96 0.79 0.21 0.26 0.62 0.38 0.42 2.27 0.24 0.47 0.98 0.50 0.47 0.34 0.34
EURPLN 0.44 1.61 6.60 0.50 0.41 0.31 0.56 0.64 0.19 0.34 1.29 0.33 0.41 0.71 0.54 0.31 0.27 0.25
EURUSD 0.27 2.23 4.90 1.01 0.53 0.57 0.49 1.02 0.40 0.27 2.10 0.40 0.82 0.96 1.37 0.31 0.40 0.38

GOOG 3.11 7.19 47.74 1.07 0.56 1.83 1.55 19.93 1.24 2.76 9.02 1.57 6.62 1.65 2.13 1.20 1.25 1.38
META 2.03 12.28 47.44 2.60 2.07 2.14 0.60 11.48 1.34 1.28 3.07 2.00 1.16 3.68 3.84 1.49 1.40 1.39
NFLX 9.50 13.23 55.41 3.70 1.59 1.39 2.59 19.01 1.66 4.36 9.67 1.26 4.00 4.35 3.36 1.66 1.56 1.26

PLNCHF 0.32 4.85 3.52 0.86 0.71 1.19 0.51 0.96 0.27 0.33 4.12 0.46 0.25 1.45 2.17 0.38 0.39 0.37
PLNGBP 0.22 1.20 10.07 0.59 0.74 0.28 0.23 1.20 0.41 0.32 2.83 0.23 0.22 0.97 0.53 0.39 0.38 0.36

TSLA 11.77 21.97 65.74 11.01 9.36 7.85 4.86 9.54 5.78 5.78 4.09 4.94 10.58 11.63 6.78 4.68 5.40 5.56
USDGBP 1.30 3.17 12.62 0.40 0.52 0.37 0.31 1.75 0.51 0.51 2.04 0.19 1.02 1.53 1.02 0.53 0.51 0.47
USDPLN 0.76 3.28 15.68 1.35 0.83 0.72 0.33 0.75 0.40 0.34 1.98 0.53 1.15 1.95 1.15 0.31 0.33 0.30
XAUUSD 1.20 6.98 26.94 1.21 1.50 0.88 0.53 1.27 0.76 1.00 5.12 0.75 1.17 1.15 1.09 1.06 0.80 0.79

CAC 0.79 7.72 30.38 1.52 1.57 1.54 1.08 2.04 1.63 1.30 4.87 1.42 1.49 3.59 2.66 1.61 1.46 1.46
DAX 1.63 8.79 36.95 2.12 2.28 1.64 0.76 4.24 1.27 1.15 4.66 1.22 1.61 3.17 3.66 1.61 1.22 1.28
DJC 2.72 6.95 38.85 1.31 1.88 1.34 1.07 0.59 0.77 1.73 6.72 1.21 0.70 3.51 2.61 1.03 0.80 0.77
DJI 2.61 7.17 38.40 1.68 1.10 1.39 1.01 1.99 1.01 1.11 7.44 1.35 1.73 1.88 3.38 1.23 1.10 1.08

FTM 1.62 9.71 37.59 1.83 3.22 2.25 0.93 2.69 1.09 1.05 5.82 1.69 1.24 3.77 3.02 1.45 1.28 1.64
KOSPI 1.26 6.42 31.89 2.01 1.20 1.33 1.30 2.18 0.81 0.52 3.18 1.29 2.62 1.18 1.25 1.21 0.80 0.77

NDX 2.96 8.35 48.43 3.06 2.31 2.57 1.66 3.18 1.56 1.59 6.95 1.86 2.21 3.56 3.59 1.68 1.67 1.60
NKX 1.74 6.67 30.44 2.75 2.46 1.96 2.32 3.71 1.87 2.18 5.78 2.19 2.81 2.55 2.90 2.68 2.10 2.04
SHC 1.24 4.93 22.28 1.77 1.98 1.70 1.22 2.91 0.93 1.29 5.30 1.39 0.79 2.60 2.32 1.52 0.86 1.00
SPX 2.10 7.42 40.64 2.86 1.43 2.20 1.31 5.93 1.11 3.78 7.87 1.48 1.86 4.81 2.50 1.30 1.18 1.10

WIG20 0.56 5.00 30.25 3.92 2.92 1.53 1.17 3.51 1.25 1.82 7.55 1.37 2.26 3.80 3.44 1.71 1.32 1.34
GOOG and META calculated for two forecasting horizons; TSLA and BTCUSD calculated for three forecasting horizons. Numbers in bold indicate minimum for a given timeseries.
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5. Conclusions

The experiment presented in this paper aimed to compare the predictive performance
of various deep learning models on different financial time series. The experiment was
conducted using the data of daily prices for 29 financial time series, including stocks,
indexes, and currency pairs, over a period of 15 years (2007–2022).

The models used in the experiment included classical statistical approaches such as
exponential smoothing and ARIMA, as well as deep learning models such as NN, LSTM,
CNN, or GAN. The models were trained using a sliding window approach and evaluated
using the mean absolute percentage error, mean squared error, and mean absolute error, as
well as the mean absolute percentage error at the first time step.

The results of the experiment showed that the best model was the naive approach,
but when disregarding the statistical approaches, several deep learning models showed
promising results. In particular, the multi-scale recurrent convolutional neural network
(Model 7) achieved the best MAPE of 1.79% on average, while ModAugNet (Model 9)
achieved a MAPE of 2.07%. The worst-performing model was Model 11, which utilised
SVM after data preprocessing with the CNN.

Based on the results presented in this study, it can be concluded that simple time
series models, even naive approach, can perform relatively well against more-complex
deep learning models in forecasting financial time series, notably in the long run. However,
deep learning models, in particular those using LSTM/RNN architectures or complex CNN
functions, have the potential to outperform statistical models in the short term, provided
they are regularly retrained and properly tuned.

It has also been observed that the quality of models tends to deteriorate if they are not
retrained after a certain period of time. This highlights the importance of regular retraining
of time series models to ensure the best-possible fit based on all the information available
at the time of forecasting. In addition, it was noted that stocks tend to have a higher MAPE
than indices or currency pairs, which may be due to their higher volatility and the need for
more sophisticated modelling techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

ARIMA Autoregressive integrated moving average
BiLSTM Bidirectional LSTM
CNN Convolutional neural network
DFT Discrete Fourier transform
EMD Empirical mode decomposition
EMH Efficient market hypothesis
GAN Generative adversarial network
GRU Gated recurrent unit
IMF Inherent mode function
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LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean-squared error
NN Neural network
OHLC Open, high, low, close
RNN Recurrent neural network
SFM State frequency memory

Appendix A. Hyperparameters Used for Training

Table A1. List of hyperparameters used for training.

Model
No.

NN
Architecture Epochs Learning

Rate Optimiser Batch
Size

Steps
Back Data Sample Performance

Metrics

1 - - - Adam - 20 3407 (Jan
2004–Jan 2018)

MAE, RMSE,
MAPE, R2

2 - - - SGD - 3,4,5
Jan 2012–Dec

2016/Jan
2007–Dec2011

RMSE, MAE,
MAPE

3

randomly
selected

number of
layers (1–6)

ensembled 10
times

200,000 0.0001 Adam - 20 - relative error

4

2 layer LSTM,
with 1/2 and

1/3 input
neurons

- - - -
2, 4, 8, 16,

32, 64,
128, 256,

512

Jan 2010–Dec
2016 (testing

last year)
MAPE

5

grid search
over layer

sizes (16, 32,
64, 128, 256)

- 0.001 (de-
creasing) Adam 128 3, 5, 10,

15, 25

Jul 2016 - Dec
2016 minutely

data

RMSE, MAE,
MAPE

6 one layer, 4
neurons 1 or 2 - Adam - - Jan 1985-Aug

2018 RMSE

7

differently (3)
scaled time

series -> CNN
(16 filters)->

GRU (16 × 3)

100 0.0005 Adam 32 30 Jan 2016–Dec
2016 accuracy

8 320 neurons
LSTM x3 4500 0.0024 - - 20 Jan 2002–Dec

2017 accuracy

9

1 LSTM 2
layers 5 and 3

neurons,
2LSTM: 4 and

2

200 0.00005 Adam 32 20 Jan 2000–July
2017

MSE MAE
MAPE

10 - 4000 0.01 RMSProp - 3, 5, 10,
15, 20 2007–2014 MSE MAE

MAPE

11

G: LSTM -> 7
neuron FC D:
FC NN with 3
layers (72, 100,

10 neurons)

- - - - 5 last 20 years MAE MSE
MAPE

12 2–4 CNN
layers - - - - 30, 40, 50,

60 1990–2014 MSE

13 - 20 0.001 Adam - - 1950-2016 MAE MSE
MAPE

14
CNN ->

MaxPooling ->
LSTM ->

Dense
- - AdaDelta - 50 2008–2018 MSE

15 - - - - - 100 2008–2017 MSE
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