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Abstract: Biogas is an important driver in carbon-neutral energy sources. Many biogas digester
setups, however, are not well optimized and waste energy or fail to maximize their gas output
potential. To optimize these systems, a framework was developed to measure and predict digester
systems” efficiencies by closely monitoring fluid movements. This framework includes a numerical
calculation of fluid behavior (Computational Fluid Dynamics (CFD)), and Deep Learning to estimate
the fluid shear-rates introduced by the agitator’s action. Additionally, a novel measurement system is
presented that can measure the same metrics, as simulated, in real-world environments. Lastly, an
outlook is given that presents the options and extensions of the presented setup to reduce prediction

error, minimize measuring efforts further, and recommend optimization approaches to the operator.

Keywords: ANN; artificial neural networks; CNN; convolutional neural networks; deep learning;
CFD; computational fluid dynamics; agitation performance prediction; shear-rate

1. Introduction

Carbon-neutral energy sources play a crucial role in mitigating climate change. Statis-
tics show that the energy generated from biomass in Germany has been continuously rising
since 1991 [1]. These systems, however, are often built up and operated without an exact
setup or analysis of the maximum efficiency. Thus, these system often do not reach their full
potential [2]. To produce energy, these systems agitate a fluid that consists of animal waste,
energy crops, organic waste, and other materials, in varying amounts [3]. The agitation
action keeps the fluid fermenting, thus producing a valuable biogas that consists mainly
of methane (CHy) and carbon dioxide (CO,), and small amounts of other gases. Biogas is
used in many different applications, such as heating or locomotion [4]. Effective agitation
is essential during the fermentation process [5]. On the one hand, over-agitation wastes
energy; on the other hand, under-agitation risks the formation of solid or foamy swimming
layers that can result in the fermentation process stopping completely. In addition to the
high variance in biogas fluid characteristics, these systems are set up with many varying
factors, such as the type of rotor used, the size of the rotor, the height and diameter of the
agitation vessel, and if the vessel is equipped with features to aid agitation by increasing
turbulence. Having one setup for every biogas digester is impossible, individual analyses
will probably increase the efficiency of these systems. This work approaches the optimiza-
tion of process by deploying deep learning. The amount of data required to properly train
a neural network far outscales what is collectible in a reasonable timeline. For this, many
different systems will have to be located and measured for extended periods. This problem
can be overcome by computationally generating the required data. Computational Fluid
Dynamics is a common practice to understand the flow of fluids in any configuration. This
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approach can be used to generate knowledge about the flow behavior in biogas power
plants. A sim-to-real transfer is achieved by tweaking the pre-trained Artificial Neural
Network (ANN) with real-world measurements.

This work presents the methodology used to design, simulate, measure, and predict
agitation efficiencies using deep learning. First, the methodology of this approach is
presented. The Computer-Aided Design and Computational Fluid Dynamics setup are
outlined to simulate systems and generate data for the deep learning phase. Next, post-
processing steps are implemented to convert simulation results to data that can also be
obtained with a real-world measuring system. Then, the Neural Network Architecture
is presented, where three commonly used approaches are implemented and compared.
The Section 2 is concluded with a detailed look at the three Neural Network Architectures
and their performances in the presented problem. After the Section 2, a Wireless Sensor
Network (WSN) to measure real-world systems is outlined. Its purpose is to measure real-
world systems, and to refine the neural network predictions. In the outlook, future work
is described that will further improve the presented system by minimizing measurement
effort and helping the operator to create an optimal agitation setup.

2. Methodology

In this section, the methodology used to set up simulation environments, numerical
simulation, post-processing, the Neural Network Architectures, and deep learning is
explained. The first part outlines the development of the 3D models that are to be used in the
numerical analysis. Next, the numerical analysis in OpenFOAM is explained, including the
setup of fluid properties, mesh-movements, mesh-boundary conditions, and information
about the overall analysis process. The subsequent section outlines further processing of
the results of numerical analysis using ParaView. These operations are crucial to align the
data formats of real-world measurements and simulation. After the CFD post-processing,
three artificial-neural-network architectures are outlined. Lastly, the performance of these
networks on training and test data is presented.

2.1. CAD

This section outlines the Computer-Aided Design (CAD) of the biogas plant models
used for this work. Two different models were implemented, from which three different
simulation cases were derived.

Figure 1 shows the different models and their stirrer setups. A 3D model of the Landia-
POP-I Slurry Mixer was implemented in a top model. The same mixer model was modified
to allow for more degrees of freedom in regard to the rotors’ position. For this, the body of
the rotor was removed and all open faces were patched. This resulted in an abstract floating
stirrer that can be placed anywhere in the vessel, without a disruption of the flow caused
by the mixers body. Surrounding the stirrer are the vessel walls, and top and bottom lids.
Depending on the type of biogas plant, these can be rounded (Figure 1 top) or fitted with
plates (Figure 1 bottom). Not shown in the figure above are the top lid, which acts as the
vessel walls, and the bottom lid, which keeps fluid from spilling out.
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Figure 1. Renders of two different plant model setups. The top lids were removed for this visualiza-

tion. (Top) shows a standard fermenter with a 28 m vessel diameter and filling height of 7 m (left)
and a Landia POP inclined blade stirrer [6] that launches the fluid perpendicular from the vessel wall
(right). (Bottom) shows an agitation setup that is based on a real-world system where fluid-tracking
measurements were taken in the past [7]. The vessel diameter is 11 m, vessel fill height is 2 m (left),
and a reduced Landia POP inclined blade stirrer is used to launch the fluid in a parallel motion to the
vessel walls.

2.2. Computational Fluid Dynamics

For this work, three simulation cases were developed, where one is based on a pre-
viously measured system [7]. One challenge when simulating biogas plants is the non-
Newtonian fluid’s behavior. The shear-thinning fluid decreases its viscosity when a force is
applied to it, varying its behavior in comparison to most fluids, like water. Additionally,
these fluids exact properties that vary from their compositions and other variables, e.g.,
animal feed. To approximate the fluid’s shear-thinning viscosity behavior, the approach of
Fosca Conti et al. [8] was followed. Thus, for this simulation, the power-law model for the
viscosity of Oswald—deWaele was chosen [9].

V= k'j’n_lr Vinin <V < Vax 1

with the kinematic viscosity v and a consistency factor K = 16.8Pas™, which equals a
kinematic consistency factor. (The kinematic consistency factor k is the quotient of the
consistency factor K and the fluid’s density p; k = %). of k =154-1073m?s~!, a power-law
index of m = 0.35, where m < 1, describes the fluid as shear-thinning. The fluid’s kinematic
viscosity limits are set to v,;,, = 107 m2s~ ! and vygy = 1073 m3s~ 1.

This simulation aims to compute field velocities v, and, with a custom post-processing-
module, field shear-rates . After the definition of fluid behaviors, the CAD models of all
parts involved in fluid movements are implemented in a simulation case.

Figure 2 shows a CFD setup used for one of three case setups that have been created
for this work. Additionally, the meshing of all the parts’ features is highlighted.

For two cases, the Landia POP-I Slurry Mixer [6] was designed as per manufacturer’s
specifications, to describe rotating speeds of 150, and 300 RPM, depending on the chosen
gearing. In a third case, a faulty agitator setup is implemented. Here, the rotor spins
in the wrong direction with a very low rotating speed of 75 RPM. For all three cases,
Arbitrary Mesh Interfaces (AMI) were implemented to cause rotor blades to spin and inflict
movement on the fluid. Other case properties include:

e Turbulence model: Only the overall resulting fluid flow is of interest. The turbulence
behavior is set to laminar.
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. Transient/steady state: The start-up behavior of the system is of interest; a transient
solver has been chosen.

*  Fluid compressibility: With the overall slow fluid velocities, we can safely assume an
incompressible fluid.

With the presented case characteristics, OpenFOAM’s pimpleFoam-solver was cho-
sen [10]. The CFD Simulation was carried on a Workstation PC, equipped with an Intel
Core i5-8600k hexa-core processor [11]. Each case took five days of continuous computation
to complete 100 s of simulation time. Data points of were captured in at least one-second
time intervals.

Figure 2. ParaView capture of a simulation case. Left shows a case setup of a previously simulated
agitation system. The displayed vessel’s radius is 14.25 m and its height is 7.8 m. right side shows
a magnification view of the setup’s agitator, with a 1.35 m rotor radius and rated rotational speed
configured to 150 RPM.

2.3. CFD Post-Processing

After computing the required metrics, namely velocity v and shear rate -y, virtual mass-
and volume-less nodes are generated within the fluid using ParaView’s Particle Tracer filter.
These nodes follow the local velocity fields of the fluid and closely replicate the behavior of
a real-world flow follower. The real-world measurement technique is outlined in Section 3.

Figure 3 shows the startup of an agitation system and the effects on the mass-less
particles (blue nodes) floating in the fluid (hidden). The presented setup was developed in
ParaView v5.10 [12], utilizing the engine’s Python scripting interface. Numerous equidis-
tant lines are created inside the vessel, which are used as seed sources for the particle
tracer. Nodes created like this can then be used for further processing in Deep-Learning
Applications.

Figure 3. ParaView setup for CFD post-processing with particle tracer nodes at simulation 1.5 s after
system start-up. Left shows a top-down view of an agitation setup, with 5.5 m vessel radius and 2 m
height. The fluid is hidden. Mass-less are shown in blue. Right figure shows a magnified view of the
rotor (0.5 m radius, 150 RPM), which is pointed north in this case. These figures show the system in
startup, where particles around the rotor have already been affected by its agitation motion.

Figure 4 shows two perspectives of a trajectory plot with 100 random particles. Since
all lines in this figure span the same time interval, longer lines denote particles with a
greater average velocity. With this information, the rotor’s location can be gauged. To
decouple absolute node positions and related velocities, as seen in Figure 4, incremental
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position information is derived from absolute positions. This step effectively transforms
the position data into local particle velocities u.

Apx Y,z
y = Xz )
At @
where Ap, . represents the particles position in a three-dimensional space, and At is

the time interval between two position measurements. For this work, At =1s.

Figure 4. 3D Plot of 100 randomly chosen particle trajectories from the system seen in Figure 3. The
cylinder approximates vessel walls and the colored lines denote the particles trajectory over the
whole 100 s simulation time. Right shows the same 3D plot viewed from a top-down ang]le.

2.4. Neural Network Architecture

In this work, widely used regression network architectures are compared to estimate
fluid shear-rates j. Fully Connected Neural Networks (FCNN) are simple setups, where
the raw input (described in previous Section 2.3) is flattened and fed into the first dense
layer of the FCNN. Subsequently, three hidden layers follow, with thirty-two, sixteen, and
five neurons, before the network terminates with a single neuron that reflects its prediction
of the mean trajectory shear-rate .

The Fully Connected Neural Network architecture is shown in Figure 5.

A P flatten FC FC FC FC
- 32 16 5 1

3x100

Figure 5. Fully Connected Neural Network (FCNN) architecture, with three densely connected
hidden layers of thirty-two, sixteen, and five neurons. The activation function of the hidden layers is
the Rectified Linear Unit (ReLU). The output layer consists of one single neuron with linear activation.

Another widely used network architecture is the Convolutional Neural Network
(CNN), which adds various convolution- and max-pooling layers, preceding densely
connected layers, to enhance features. Two different architectures for this type of network
were developed.

The first CNN will be referred to as ID-CNN, because, like the FCNN, it starts with a
flattening layer, resulting in Rank-1 tensor operations. Next, two 1D convolution layers,
with kernel sizes of ten and seven, follow. After convolution, global max-pooling is applied,
after which the network proceeds with the same three dense layers as presented for the
FCNN (32, 16, 5, and 1 neurons).

Figure 6 shows the architecture of the 1D Convolutional Neural Network.
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N I I FC FC FC FC
X *)[ flatten H conv H conv H Max Pool H 32 H 16 H 5 H 1 }

3x100

Figure 6. Convolutional Neural Network (CNN) with flattening operation in the first layer, referred
to as 1ID-CNN in this work. The flattening follows the Rank-1 Tensor operations convolution with
a size of 10 kernels, convolution with a size of 7 kernels, global max-pooling and the same densely
connected layers as described in Figure 5. All hidden layers are configured with Rectified Linear Unit
(ReLU) activation; the single neuron output layer has linear activation.

In contrast, a Rank-2 Tensor based CNN was implemented. This architecture follows
the same outline as 1D-CNN, using 3 x 3 convolution kernels. The main difference is that
flattening is applied right before the first dense layer.

The 2D-CNN architecture is shown in Figure 7.

I I FC FC FC FC
X *{ conv H conv }—)[ Max Pool H flatten H 32 H 16 H 5 H 1 }

3x100

Figure 7. Convolutional Neural Network (CNN) with flattening operation in the last layer before
the dense layers, referred to as 2D-CNN in this work. Input data are fed into two Rank-2 Tensor
convolution layers with 3 x 3 kernels, followed by a global max-pooling layer, before feeding these
into the same densely connected layers as described in Figure 5. All hidden layers are configured with
Rectified Linear Unit (ReLU) activation; the single neuron output layer undergoes linear activation.

2.5. Deep Learning

All networks outlined in the last section (Section 2.4) were trained over 150 epochs.
The Mean-Squared Error (MSE) loss function was chosen for these regression architectures.
With the framework explained in Sections 2.1-2.3, 25,977 datasets of complete length (100 s
simulated time span, and 1 Hz update rate) were generated. Datasets were split into 80%
training data, and 20% test data, which are only used for validation tests.

Figure 8 show all three network performances throughout the 150 epochs of training.
The FCNN shows no meaningful improvements after around 20 training epochs, where
the loss stays around 0.4 MSE. Additionally, the FCNN shows signs of overtraining after
around 60 training epochs: the loss in the validation set increased, where as the loss in the
training set continued to decrease. The 1D-CNN performed very similarly to the FCNN,
although it needs around 40 training epochs to achieve the same performance of around
0.4 MSE. After around 100 training epochs, this network shows sings of overtraining,
with the MSE not deviating much from the FCNN’s. The FCNN and the 1D-CNN never
reached validation losses close to the ones reached on the training-sets; the difference in
the validation set is always bigger than 0.3 MSE. Lastly, the 2D-CNN performs the best
for the presented problem. After around 50 training epochs, the network reaches its best
performance with the validation loss function decreasing to around 0.1 MSE, where the
loss functions on the training and validation sets align. Like the other two, this network
starts showing sings of overtraining after around 70 training epochs. All three networks,
especially the 2D-CNN, show very high variability in their losses throughout the training.
This could originate from a lack of training data.

Since the single difference between the 1D- and 2D-CNN is the position of the flattening
layers, this compirison shows how valuable the convolution and pooling operations on the
3D space data in the presented problem are.



Eng. Proc. 2023, 39, 69

7 of 10

—— 2d-cnn train

i \ !
0.6 : —-= 2d-cnn validation

N ! !
Wy ! ] A | . —— 1d-cnn train
'\\\i“\,_ il ly " [} | —-- 1d-cnn validation

0.5 \ "‘_A \ 'I "'\ i | ”| “\ \ I ll_ —— fenn train

\ ?I\ :/ h“'l , | i \ ‘ ' \ ;l]\ l —-= fcnn validation

YT .4\’ i ,l (\“\ ‘«‘»/\“‘ \F \)\ ,\x\ r“‘“, Ny
0.4 v *r/ A _;N,dl X u‘ /‘ \ o by
Y

0.3

MSE Loss

0.2

0.1

0.0

Figure 8. Mean-Squared-Error losses of the presented deep learning architectures. Solid lines denote
the losses on the training set of the network, whereas the dashed lines denote the losses on a test
set. Red lines show losses of the FCNN; green lines refer to the 1D-CNN; lastly, blue lines show the
losses of the 2D-CNN.

3. Real-World Measurements

After focusing on the computational methods for data collection, this chapter focuses
on real-world measurements and post-processing to refine the same deep-learning models
as explained in Section 2.4.

3.1. Real-World Measuring Setup

Figure 9 left shows a system evaluation made in the past [7]. This system was able to
follow the behavior of the fluid on its surface, although it offered no insight into sub-surface
flow characteristics. To achieve this, the measurement system was extended in the NeoBio
research project [13]. This updated node is shown in Figure 9 right. It introduces important
features to extend the existing functionality. This version can vary its volume to mass
proportions by moving a flexible membrane, enabling it to sink, come up to the fluid surface,
and, in a neutral setting, follow the surrounding fluid’s motion. Additionally, the fluid’s
conductivity is measured, which may provide further insights into fluid compositions and
help specify fluid properties for computational analysis and simulation.

For the complete measuring setup, the node seen in Figure 9 right, is accompanied by
anchor nodes mounted on the vessel side walls and a central data collection system, called
backbone. The anchor nodes are shown in Figure 9 left.
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Figure 9. Left shows an overlay of a past measurement with a revision 1 of the measurement system
on a top-down photo of the measurement in progress. Anchor nodes are shown on the vessel’s west-,
north- and east-facing rims. Right shows an updated version of the sensor particle that can measure
fluid behavior below the fluid’s surface.

Figure 10 outlines the real-world data collection methodology.The sensor follows the
fluid movements by setting the sensors’ buoyancy to neutral, so it follows the surrounding
fluid’s flow. While the sensor is submerged, the movement is tracked using an inertial
measurement unit (IMU) that integrates accelerations into an absolute trajectory [14]. Since
this method of movement tracking is only accurate for a short time, the sensor node
will frequently increase its buoyancy, letting itself rise to the substrate surface. From
there, the WSN locates its absolute position in the fermenter using ultra-wideband (UWB)
localization [15]. Next, all gathered data from previous dive are sent to the backbone, again
using the UWB interface. After all data are off-loaded to the backbone, the sensor node will
return to measuring mode, restarting the cycle.

>

e

— Q=152
—_— Flake olloias

Figure 10. Shear-rate measurement concept utilizing the sensors’ inertial measurement unit and
gyroscope, and the same shear-rate effect on biogas substrate flakes, which are forced to break up
into colloids [13].

3.2. Real-World Measurement Post-Processing

To use gathered datasets for deep-learning (see Section 2.4), they have to be converted
into the same format, as explained in Section 2.2. Most importantly, this includes calculating
shear-rates along the sensor’s trajectory. In Section 2.2, the simulated measuring nodes
were defined with no volume and mass, and thus did not have inertia. Since this cannot be
achieved in the real world, it has to be taken into account.

Figure 11 top outlines the effect of fluid shear-rates on a real-world sensor flowing
with a liquid stream. Arrows on the left denote liquid flow velocities, which are increasing
from bottom to top. The difference in the fluid speeds on the sensor’s surface will cause it
to spin. This spin can be detected by the sensor’s IMU, and gyroscope. Figure 10 bottom
shows the effect of the same change in fluid velocities on flakes that is found in a biogas
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substrate. These flakes are not rigid, like the sensor, and thus are elongated by the different
forces applied to it until one flake breaks up into smaller colloids.

Set buoyancy to

neutral

Conductivity
Measurement

IMU / Gyroscope:
Trajector Mesurement|

No. ¢~ Time limit
reached?

M

Yes

%

Increase buoyancy to
emerge

P

UwB:
Get Abs. Pos.

T

uwa:
Send Telemetry

——

Figure 11. Real-World Measurement methodology to track fluid movement and substrate conductivity.

4. Conclusions and Outlook

This work presented a framework for setting up, extracting and pre-processing data
from simulated as well as real-world biogas plants. In addition, three deep-learning
models were presented that, based on the generated data, predict a biogas plant’s agitation
efficiency via its shear-rate. The presented 2D-CNN is capable of predicting shear rates with
a Mean-Squared Error (MSE) of less than 0.1 MSE, although all three models show signs
of overtraining after 80 epochs. To gauge the accuracy of these systems in the real world,
a framework for measuring these metrics in real-world environments was developed,
although this could not be tested due to semiconductor shortages and the COVID-19
pandemic. Since the full range of biogas characteristics heavily depend on numerous
factors, it is hard to specify these in a mathematical model for a Computational Fluid
Dynamics (CFD) simulation. More research and a standardized model for a wide range of
biogas plant setups will help to achieve results that can mimic real-world systems more
closely.

Physics-Informed Neural Networks (PINNs) are a novel type of Deep-Learning setup
that is specifically designed to predict physics problems and may increase the performance
of the models presented here. In addition to PINNSs, other features will be implemented
using other deep-learning techniques. To further reduce the number of measurements
required for each system, and increase the energy-efficiency of the real-world measuring
system, Time Series Forecasting will be utilized to predict node trajectories.

Another problem to solve is the actual optimization of a real-world setup. Since the
framework presented here only shows how well a system is performing, the optimization
process is left to the user. A Recommender System will be implemented to solve this problem.
This system will provide approaches to optimize agitation by, for example, suggesting
optimal agitator settings or positions.
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