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Abstract: The propensity of data to cluster at extreme values is important for risk assessment. For
example, heavy rain over time leads to catastrophic floods. The extremal index is a measure of
Extreme Values Theory that allows measurement of the degree of high-value clustering in a time
series. Inference about the extremal index requires a prior choice of values for tuning parameters,
which impacts the efficiency of existing estimators. In this work, we propose an algorithm that avoids
these constraints. Performance is evaluated based on simulations. We also illustrate with real data.
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1. Introduction

The occurrence of extreme values can lead to risky situations. Climate change, the
global economic and financial crisis resulting from the COVID-19 pandemic situation, and
the war in Ukraine have contributed to continuously growing attention from analysts,
namely, to the risk of extreme phenomena. The duration of extreme values in time means
the generation of clusters, the extension of which can aggravate the phenomenon. Extreme
Values Theory (EVT) presents a set of adequate tools in this context. The extremal index is a
measure of serial dependence assessing the propensity of data for the occurrence of clusters
of extreme values. Figure 1 shows the maximum of sea-surge heights, where clusters of
high values are visible.
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Figure 1. Maximum hourly sea-surgeheights (over contiguous 15-h time periods) in years 1971–1976
at the Newlyn Coast, Cornwall, UK.

More precisely, considering X = {Xn}n≥1 as a stationary sequence of random vari-
ables (r.v.) with a common marginal distribution function (d.f.) F and denoting Mn =
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max(X1, ..., Xn), then X has extremal index θ ∈ (0, 1] if for each real τ > 0 there exists a
sequence of normalized levels un, i.e., satisfying n(1− F(un)) → τ, as n → ∞, such that
P(Mn ≤ un) → exp(−θτ). In the independent and identically distributed (i.i.d.) case,
we have P(Mn ≤ un) → exp(−τ) and thus θ = 1. On the other hand, if θ = 1, then the
tail behavior of X resembles an i.i.d. sequence. Clustering of extreme values takes place
whenever θ < 1, and the smaller the θ is, the larger is the propensity for clusters to appear.
Under some dependence conditions, θ is stated as the arithmetic inverse of the mean cluster
size (Hsing et al. [1] 1988).

Assuming F is continuous, we have Ui = F(Xi), i = 1, ..., n standard uniform r.v. and
P(−n log(F(Mn)) ≥ τ) ≈ P(n(1 − F(Mn)) ≥ τ) = P(Mn ≤ un) → exp(−θτ), with
F(Mn) = max(U1, ..., Un). Thus, Yn = −n log(F(Mn)) and Zn = n(1− F(Mn)) follow
asymptotically an exponential distribution with parameter θ. The maximum likelihood
estimator was considered by Northrop ([2] 2015) based on Yn. More precisely, dividing
the time series X1, ..., Xn into kn blocks of length bn, with n = bnkn, and considering
Mni = M((i−1)bn+1):(ibn) = max(X(i−1)bn+1, ..., Xibn), i = 1, ..., kn, the maximum of the i-th
block in the disjoint blocks case, and Mni = M((i−1)):(i+bn−1) = max(Xi−1, ..., Xi+bn−1),
i = 1, ..., n− bn + 1, the maximum of the i-th block in the sliding blocks case, the Northrop
estimator is given by

θ̃N =

(
1
tn

tn

∑
i=1

Ŷni

)−1

, (1)

where Ŷni = −bn log(F̂(Mni)) and F̂ denotes the empirical d.f. estimating the usually
unknown F, with tn = kn or tn = n− bn + 1 depending on whether we are using disjoint
or sliding blocks, respectively. Berghaus and Bücher ([3] 2018) considered

θ̃B =

(
1
tn

tn

∑
i=1

Ẑni

)−1

, (2)

with Zni = bn(1− F̂(Mni)), a more amenable formulation to derive the asymptotic proper-
ties. Here, we consider the Berghaus and Bücher estimator with bias adjustment given by

θ̂ = θ̃B − 1/bn. (3)

We also consider the sliding blocks version since it usually performs better (Northrop [2]
2015, Berghaus and Bücher [3] 2018).

Observe that the estimators above only depend on a tuning parameter: the block
length b ≡ bn. This is an advantage of these methods since most estimators of θ pre-
sented in the literature have two sources of uncertainty and thus two parameters to be
defined in advance: the clustering generation of high values and the choice of a high
threshold above which the clusters occur. To mention the best known ones, there are the
Nandagopalan ([4] 1990), Runs and Blocks (Weissman and Novak, [5] 1998 and references
there in), K-gaps (Süveges and Davison, [6] 2010), censored/truncated (Holěsovský and
Fusek, [7,8] 2020/22), and cycles estimator (Ferreira and Ferreira, [9] 2018). We also refer
to other estimators that require a single tuning parameter, such as the intervals estimator,
which needs to fix a high threshold (Ferro and Segers, [10] 2003), and, similar to the Northop
estimator above, where we only choose the block length for maxima, we cite Gomes ([11]
1993), Ancona-Navarrete and Tawn ([12] 2000), and Ferreira and Ferreira ([13] 2022).

As already highlighted in the literature, there is no simple optimal methodology for
the best choice of block length and a single estimate for θ. In EVT, we have a typical bias–
variance trade-off observed in sample path estimates of rare event parameters. For block
estimators, the bias decreases with b while the variance increases. A recurrent method
is to plot the estimates obtained for successive block size values and visually identify
case-by-case plateau zones of these estimates. The stability around a value is an indicator
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of a reasonable estimate, and this stability region, in general, should have neither too small
nor too large a value of b due to the trade-off between bias and variance already mentioned.
Figure 2 is a plot of the trajectory of estimates (full line) along with 95% confidence intervals
(CI) (dashed line) obtained for each block length b from 1 to 100 in a random sample of
dimension 1000 generated from a moving maximum model with standard Fréchet margins.
We can see a plateau region in the estimates around the true value (horizontal line) θ = 0.5
for the block sizes between 25 and 45. Observe the large variability occurring for large
values of b and the higher bias for small values of b.
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Figure 2. Estimates of θ̂ given in (3) for successive values of block size b = 1, . . . , 100 (full line)
obtained for a sample simulated from a moving maxima Fréchet model with θ = 0.5 (horizontal line).
The dashed lines correspond to 95% CI.

Some methods have been proposed in the literature to help in the choice of tun-
ing parameters based on the stability regions of the estimates graph: see, e.g., Frahm
et al. ([14] 2005), Gomes and Neves ([15] 2020), and their references. In particular, the
algorithm proposed in Frahm et al. ([14] 2005) was implemented in the context of estimat-
ing the bivariate tail dependence, and in Ferreira ([16] 2018), it was applied to extremal
index estimators requiring the choice of a high threshold. In this work, our objective is
to propose an adaptation of the algorithm developed in Frahm et al. ([14] 2005) applied
to estimator (3) in order to find a suitable plateau of estimates taking into account the
bias–variance trade-off. As a byproduct, this will allow us to circumvent the unique tuning
parameter selection corresponding to the block size of where the sequence of maximums
will be extracted, as described above. The method will be detailed in Section 2 and analyzed
through simulation in Section 3. We end with an application to real data.

2. Estimation Method

Our proposed estimation of θ is based on the bias-corrected estimator θ̂ in (3) by consid-
ering sliding blocks and on the heuristic plateau-finding algorithm of Frahm et al. ([14] 2005).

The algorithm is described in the following steps:

Step 1. Calculate estimates θ̂b from estimator (3) for 1 ≤ b ≤ t < n;
Step 2. Smooth the results of the previous step by taking means of 2w + 1 successive

estimates; we consider bandwidth w = b0.02tc;
Step 3. Define plateaus of length m = b

√
t− 2wc, i.e., pj =

(
θ̂ j, ..., θ̂ j+m−1

)
, j = 1, ..., t−

2w−m + 1;
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Step 4. Compute the standard deviation s of θ̂1, ..., θ̂t−2w and choose the first plateau pj

satisfying ∑
j+m−1
i=j+1

∣∣∣θ̂i − θ̂ j

∣∣∣ ≤ 2s;

Step 5. The extremal index is estimated through 1
m ∑m

i=1 θ̂ j+i−1, i.e., taking the average of
the estimates that constitute the plateau chosen in the previous step. This is denoted
the plateau estimator.

The estimators (1), (2), and (3) are already implemented in package exdex of software
R (Northrop and Christodoulides [17] 2019) with the respective CIs. We use package exdex
to compute estimator (3) under sliding blocks and the respective upper and lower 95% CI
bounds. We also apply Steps 1, 2, and 3 to the lower and upper bounds of the CIs. Once
the plateau of theta estimates is chosen in Step 4, we pick the corresponding plateau in the
CI limits, and in Step 5, we apply the average of the plateau values of the lower limit of the
CI as well as the average of the plateau values of the upper limit of the CI.

We are going to analyze the estimation method described above through simulation.
The models that will be used are the following:

• First-order auto-regressive model with Cauchy standard marginals (ARC), Xi =
ρXi−1 + εi, {εi} i.i.d. having Cauchy d.f. with mean 0 and scale 1− |ρ| and θ = 1− ρ
if ρ > 0 (Chernick et al. [18], 1991); we consider ρ = 0.9 and θ = 0.1;

• An m-dependent model (MMU), Xi = max(Ui, Ui+1, ..., Ui+m−1), i ≥ 1, where {Ui}
is an i.i.d. sequence of r.v. (Newell [19] 1964) with θ = 1/m; we consider Ui, i ≥ 1,
standard uniform r.v., and m = 3, and thus, θ = 1/3;

• Moving maxima Fréchet model (MMF), Xi = maxj=0,...,d ajZi−j with aj ≥ 0, ∑d
j=0 aj =

1 and {Zi} i.i.d. standard Fréchet where θ = maxj=0,...,d aj (Weissman and Cohen [20]
1995); we consider d = 2 and parameters a0 = 1/3, a1 = 1/6, and a2 = 1/2, and thus,
θ = 1/2;

• ARCH(1) process, Xi = (β + αX2
i−1)

1/2εi, with i.i.d. Gaussian innovations {εi}, α =

0.7, and β = 2 · 10−5, where θ = 0.721 (Cai, [21] 2019);
• First-order max auto-regressive (MAR), Xi = max(φXi−1, εi), i ≥ 1, X0 = ε1/(1− φ),

{εi} i.i.d. with standard Fréchet marginals and θ = 1− φ (Davis and Resnick [22]
1989); we consider φ = 0.1 a nd θ = 0.9;

• An i.i.d. sequence (Ind) of Fréchet r.v. where θ = 1.

3. Simulation Study and Application

The simulation study is based on random generation of samples with size 1000 repli-
cated 1000 times within each of the models described above. We consider different models
with different values of θ. We apply the estimation plateau method of Section 2 both
to estimate θ and the respective 95% CI lower and upper bounds. Table 1 contains the
estimation global results of the plateau method. See also the simulation results of θ̂ given
in (3) for each block size b in Figure 3 as well as the results of the plateau method. We
can observe in each model that the plateau estimate (thicker gray horizontal full line) is
located in a plateau zone of the sample path of estimates plotted as a function of block
size b (full black line), as expected. We can also see that the plateau estimate is close to the
true value (blue horizontal full line). In all cases, it is verified that the limits of the 95% CIs
estimated by the plateau method (thicker gray horizontal dotted–dashed lines) include the
true value of θ. In the ARCH case, the estimates closest to the true value of θ occur for large
values of b where the variability is very high, which makes it difficult to apply the plateau
methodology. Even so, the root mean squared error (rmse) of 0.1126 is not very expressive.
The independent model (Ind) has θ = 1 and, therefore, constitutes a frontier value of the
parameter support, which typically leads to difficulties in statistical estimation. Still, the
plateau method shows relatively low bias and rmse. Observe also that in the MAR model,
we have θ = 0.9, which is quite near to the boundary value of 1, and the plateau method
does a very good job.
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Figure 3. Simulation results: average of estimates of θ for each block size b = 2, . . . , 200 using θ̂ in (3)
(full black line) and average of respective 95% CI upper and lower bounds (dotted lines); plateau
estimation of θ (thicker gray horizontal full line) and respective plateau estimates of 95% CI upper
and lower bounds (thicker gray horizontal dotted–dashed lines). The true value of θ corresponds to
the blue horizontal full line.
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Table 1. Simulation results of plateau method: average of θ estimates (mean), average of lower and
upper 95% CI bound estimates, bias, root mean squared error (rmse), and standard deviation of θ

estimates (sd).

mean lower upper bias rmse sd

ARC (θ = 0.1) 0.1106 0.0841 0.1372 0.0106 0.0218 0.0190

MMU (θ = 1/3) 0.3587 0.3042 0.4139 0.0254 0.0494 0.0424

MMF (θ = 0.5) 0.5160 0.4379 0.5940 0.0160 0.0636 0.0616

ARCH (θ = 0.721) 0.7634 0.6267 0.8920 0.0424 0.1126 0.1044

MAR (θ = 0.9) 0.9017 0.7779 0.9763 0.0017 0.0827 0.0827

Ind (θ = 1) 0.9709 0.8756 0.9969 −0.0291 0.0643 0.0573

Application to Real Data

We illustrate the method with the real data newlyn available in the R package exdex
consisting of 2894 sea-surge heights measured at the coast of Newlyn, Cornwall, UK, over
years 1971–1976. The observations correspond to the maximum hourly surge heights
during periods of 15 h. See the left plot in Figure 4. Previous analysis of this data can be
seen in Northrop ([2] 2015) and references therein. The sample path of estimates from (3)
as a function of block size b and respective 95% confidence limits are plotted on the right
graph of Figure 4. The horizontal full line corresponds to the plateau estimate of θ given by
0.2577, and the horizontal dotted–dashed lines correspond to the plateau 95% CI estimate
(0.2206, 0.2948).
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Figure 4. (Left) Maximum hourly (within successive 15-hour periods) surge height time series at
Newlyn Coast, Cornwall, UK, in years 1971–1976; (Right) Sample path estimates obtained from
estimator in (3) (full line) and respective 95% CI limits (dotted lines) for successive values of block size
b, plateau estimate of θ (horizontal full line), and respective 95% CI plateau estimate limits (horizontal
dotted–dashed lines).

4. Conclusions

This work addresses the estimation of the extremal index θ. This is an important
measure in time series, namely in assessing risky phenomena, as it measures the propensity
for the occurrence of clusters of extreme values. The estimation of θ requires a prior
setting of tuning parameter values that impacts the precision of estimates. In this work, we
presented an algorithm that allows estimation of θ free of tuning parameters. We applied
this methodology to diverse models, and the results are encouraging in several cases. In
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the future, it is intended to continue the study of this methodology and develop it in order
to improve its applicability to different types of models.
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