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Abstract: Modelling the non-stationary unconstrained bivariate integer-valued autoregressive of or-
der 1 (NSUBINAR(1)) model is challenging due to the complex cross-correlation relationship between
the counting series. Hence, this paper introduces a novel non-stationary unconstrained BINAR(1)
with geometric marginals (NSUBINAR(1)GEOM) based on the assumption that the counting series are
both influenced by the same time-dependent explanatory variables. The generalized quasi-likelihood
(GQL) estimation method is used to estimate the regression and dependence parameters. Monte
Carlo simulations and an application to a real-life accident series data are presented.
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1. Introduction

In the literature, several researchers have developed first-order bivariate integer-
valued autoregressive (BINAR(1)) models to analyse bivariate time series of counts. Origi-
nally, Pedeli and Karlis [1,2] developed two constrained BINAR(1) models with Poisson
(CBINAR(1)P) and negative binomial (NB) (CBINAR(1)NB) innovations by extending the
classical INAR(1) model of McKenzie [3] based on the binomial thinning mechanism [4].
These two models were developed under stationary moment assumptions only and the
cross-correlation between the bivariate series was induced by the correlated Poisson and
NB innovations, hence implying a constrained relationship. By the same token, Pedeli and
Karlis [5] extended the CBINAR(1)P model to an unconstrained BINAR(1) model with
Poisson innovations (UBINAR(1)P) under the same condition of stationarity. In this latter
model, the cross-correlation between the series was induced by the correlated Poisson
innovation terms and the relationship between the observations of each counting series
with previous-lagged observations of the other series.

Likewise, Ristic, Nastic, Jayakumar and Bakouch [6] and Nastic, Ristic and Popovic [7]
developed a stationary UBINAR(1) model with geometric marginals (UBINAR(1)GEOM)
with independent mixed geometric innovations. Hence, the cross-correlation relationship
was induced only by the relation of the current observations with previous-lagged obser-
vations of the other series via the negative binomial (NB) thinning operator. Interestingly,
Nastic et al. [7] showed in their paper that the UBINAR(1)GEOM yields better AICs than
the above over-dispersed BINAR(1) models. However, it is worth mentioning that the
UBINAR(1)GEOM model was developed only for stationary time series and hence, cannot
be used to analyse non-stationary real-life over-dispersed series.

As for non-stationary time series of counts, few BINAR(1) models have been devel-
oped. Mamodekhan, Sunecher and Jowaheer [8] developed a CBINAR(1) model with
Poisson innovations under non-stationarity assumption (NSCBINAR(1)P) induced by
time-dependent explanatory variables. In a similar context, Sunecher, Mamodekhan and
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Jowaheer [9] developed a non-stationary CBINAR(1) model with NB innovations for over-
dispersed time series of counts (NSCBINAR(1)NB). However, an unconstrained BINAR(1)
model under the non-stationarity context that can model over-dispersed counting series
has not yet been developed in the literature. Hence, in this paper we propose to develop
a non-stationary unconstrained BINAR(1) model with geometric innovations (NSUBI-
NAR(1)GEOM) similar to Pedeli and Karlis [5]. However, such model development poses
some computational challenges in estimating the unknown model parameters as it is rather
difficult to specify the joint generating function [10].

In the paper by Pedeli and Karlis [2,5], the conditional maximum likelihood (CML)
approach was compared with the method of moments (MoM), where the authors concluded
that CML yields far better estimates than MoM, but at huge computational costs. A similar
conclusion was drawn by Nastic et al. [7] who used the least-square (LS) technique, as
an alternative to CML, which omits the likelihood function. In the same way, due to
the computational challenges of the CML, Mamodekhan et al. [8] and Sunecher et al. [9]
developed the generalized quasi-likelihood (GQL) approach in the non-stationary bivariate
context. Mamodekhan et al. [8] compared the GQL with CML, where it was shown that
GQL yields asymptotically equally efficient estimates as CML. Hence, based on the above
findings, the unknown parameters of the NSUBINAR(1)GEOM will be estimated using
the GQL.

The organization of the paper is as follows: In the next section, the NSUBINAR(1)
model is developed. In Section 3, the GQL approach is developed under the non-stationarity
bivariate context. Section 4 focuses on the simulation part where BINAR(1) data with
geometric marginals are generated and the GQL approach is used to estimate the model
parameters. In Section 5, the model is applied to the accident data in Mauritius. The
conclusion is provided in the final section.

2. The Non-Stationary Unconstrained BINAR(1) with Geometric Marginals
(NSUBINAR(1)GEOM)

The UBINAR(1) model is specified as:

Y[1]
t = ρ11 ∗Y[1]

t−1 + ρ12 ∗Y[2]
t−1 + R[1]

t (1)

Y[2]
t = ρ21 ∗Y[1]

t−1 + ρ22 ∗Y[2]
t−1 + R[2]

t (2)

based on the following assumptions:

(a) Y[k]
t is geometric such that Y[k]

t ∼ Geom(
µ
[k]
t

1+µ
[k]
t

). Hence, E(Y[k]
t ) = µ

[k]
t and Var(Y[k]

t ) =

µ
[k]
t (1 + µ

[k]
t ), where µ

[k]
t = exp(x

′
tβ

[k]) with xt = [xt1, xt2, . . . , xt j, . . . , xt p]
′

is a (p× 1)

vector of covariates influencing both Y[1]
t and Y[2]

t , with corresponding regression

coefficients β[k] = [β
[k]
1 , β

[k]
2 , . . . , β

[k]
j , . . . , β

[k]
p ]
′

for t = 1, 2, . . . , T and k ∈ {1, 2}.

(b) ∗ is the binomial thinning operator [4] such that ρij ∗ Y[j]
t−1 = ∑

Y[j]
t−1

m=1 Zm with

Zm ∼ Geom(
ρij

1+ρij
). Hence, E(ρij ∗ Y[j]

t−1) = ρijE(Y
[j]
t−1) and Var(ρij ∗ Y[j]

t−1) =

ρij(1 + ρij)E(Y[j]
t−1) + ρ2

ijVar(Y[j]
t−1).

(c)

Corr(R[1]
t , R[2]

t′
) =

{
κ12,t t = t

′
,

0 t 6= t
′
.

E(Y[1]
t ) = E(ρ11 ∗Y[1]

t−1) + E(ρ12 ∗Y[2]
t−1) + E(R[1]

t )

µ
[1]
t = ρ11µ

[1]
t−1 + ρ12µ

[2]
t−1 + E(R[1]

t ). (3)
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Re-arranging Equation (3), we have

E(R[1]
t ) = λ

[1]
t = µ

[1]
t − ρ11µ

[1]
t−1 − ρ12µ

[2]
t−1. (4)

Similarly,
E(R[2]

t ) = λ
[2]
t = µ

[2]
t − ρ21µ

[1]
t−1 − ρ22µ

[2]
t−1. (5)

Var(Y[1]
t ) = Var(ρ11 ∗Y[1]

t−1 + ρ12 ∗Y[2]
t−1 + R[1]

t )

Var(Y[1]
t ) = ρ11(1 + ρ11)E(Y[1]

t−1) + ρ2
11Var(Y[1]

t−1) + ρ12(1 + ρ12)E(Y[2]
t−1) + ρ2

12Var(Y[2]
t−1)

+ 2ρ11ρ12Cov(Y[1]
t−1, Y[2]

t−1) + Var(R[1]
t )

µ
[1]
t + µ

[1]
t

2
= ρ11(1 + ρ11)µ

[1]
t−1 + ρ2

11(µ
[1]
t−1 + µ

[1]
t−1

2
) + ρ12(1 + ρ12)µ

[2]
t−1 + ρ2

12(µ
[2]
t−1 + µ

[2]
t−1

2
)

+ 2ρ11ρ12Cov(Y[1]
t−1, Y[2]

t−1) + Var(R[1]
t ) (6)

Re-arranging Equation (6), we have

Var(R[1]
t ) = µ

[1]
t (1 + µ

[1]
t )− ρ11(1 + ρ11)µ

[1]
t−1 − ρ2

11µ
[1]
t−1(1 + µ

[1]
t−1)− ρ12(1 + ρ12)µ

[2]
t−1

− ρ2
12µ

[2]
t−1(1 + µ

[2]
t−1)− 2ρ11ρ12Cov(Y[1]

t−1, Y[2]
t−1) (7)

and similarly,

Var(R[2]
t ) = µ

[2]
t (1 + µ

[2]
t )− ρ21(1 + ρ21)µ

[1]
t−1 − ρ2

21µ
[1]
t−1(1 + µ

[1]
t−1)− ρ22(1 + ρ22)µ

[2]
t−1

− ρ2
22µ

[2]
t−1(1 + µ

[2]
t−1)− 2ρ21ρ22Cov(Y[1]

t−1, Y[2]
t−1), (8)

The above moments clearly indicate that the marginal distribution of R[k]
t is rather complex

to derive. To facilitate the derivation of the cross-covariances, we write Equations (1) and
(2) in vector form as follows:

Y t = A ∗ Y t−1 + Rt (9)

with Yt = [Y[1]
t , Y[2]

t ]
′
, Rt = [R[1]

t , R[2]
t ]
′
, A =

(
ρ11 ρ12
ρ21 ρ22

)
.

Assuming Σh,t =

[
Cov(Y[1]

t , Y[1]
t+h) Cov(Y[1]

t+h, Y[2]
t )

Cov(Y[1]
t , Y[2]

t+h) Cov(Y[2]
t , Y[2]

t+h)

]
, from Pedeli and Karlis [5]

and Ristic et al. [6], it was shown that Σh,t = AhΣ0,t and hence

Cov(Y[1]
t , Y[2]

t ) = Cov(ρ11 ∗Y[1]
t−1 + ρ12 ∗Y[2]

t−1 + R[1]
t , ρ21 ∗Y[1]

t−1 + ρ22 ∗Y[2]
t−1 + R[2]

t )

= (ρ11ρ22 + ρ12ρ21)Cov(Y[1]
t−1, Y[2]

t−1) + ρ11ρ21(µ
[1]
t−1 + µ

[1]
t−1

2
)

+ ρ22ρ12(µ
[2]
t−1 + µ

[2]
t−1

2
) + [κ12,t

√
Var(R[1]

t )

√
Var(R[2]

t )]. (10)

Note that if α = ρ11 = ρ12, γ = ρ21 = ρ22, µ = µ
[1]
t−1 = µ

[2]
t−1 and κ12,t = 0, Equation (10)

simply reduces to Cov(Y[1]
t , Y[2]

t ) = 2αγ
1−2αγ µ(1 + µ), which is the same as in Ristic et al. [6].

3. Estimation Method

The GQL equation to estimate the regression parameters is specified as:

Dβ
′
Σβ
−1( f − µ) = 0 (11)
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with score vector f = [ f 1, f 2, . . . , f t, . . . , f t+h, . . . , f T ] with f t = [Y[1]
t , Y[2]

t ]
′

and

µ = [µ1, µ2, . . . , µt, . . . , µT ] with corresponding mean µt = [µ
[1]
t , µ

[2]
t ]
′

for t = 1, 2, . . . , T.
The covariance matrix Σβ is a (2T × 2T). The derivative matrix Dβ is denoted by

Dβ = [D1, D2, . . . , Dt, . . . , DT ]
′ with

Dt =

 ∂µ
[1]
t

∂β[1] 0

0 ∂µ
[2]
t

∂β[2]


2p×2

where ∂µ
[k]
t

∂β
[k]
j

= µ
[k]
t x′tj.

The Newton–Raphson iterative technique is used to estimate the regression parameters
as follows: (

β̂
[1]
r+1

β̂
[2]
r+1

)
=

(
β̂
[1]
r

β̂
[2]
r

)
+ [Dβ

′
Σβ
−1Dβ]

−1
r [Dβ

′
Σβ
−1( f − µ)]r (12)

where β̂
[k]
r are the estimates at the rth iteration and [.]r are the values of the expression at

the rth iteration.
For an initial value of [ρ̂11, ρ̂12, ρ̂21, ρ̂22,κ̂12,t, β], we solve the iterative Equation (12) until

convergence. These estimates are consistent and under mild regulatory conditions, (β̂− β)
′

is asymptotically normal with a mean of 0 and a covariance matrix of [Dβ
′
Σβ
−1Dβ]

−1 as
shown in [8,9,11].

A second GQL is specified to estimate the dependence parameter ψ = [ρ11, ρ12, ρ21, ρ22]
as follows:

Dψ
′
Σψ
−1(Yψ − µψ) = 0, (13)

with Yψ = [Y[1]
1 Y[2]

1 |Y
[1]
0 , Y[2]

0 , Y[1]
2 Y[2]

2 |Y
[1]
1 , Y[2]

1 , . . . , Y[1]
t Y[2]

t |Y
[1]
t−1, Y[2]

t−1, . . . ,

Y[1]
T Y[2]

T |Y
[1]
T−1, Y[2]

T−1]
′
T×1 and µψ = E(Yψ).

The (T × T) covariance matrix Σψ comprises of Var(Y[1]
t Y[2]

t | Y[1]
t−1, Y[2]

t−1) along the

diagonal and Cov(Y[1]
t Y[2]

t Y[1]
t+hY[2]

t+h | Y[1]
t−1, Y[2]

t−1, Y[1]
t+h−1, Y[2]

t+h−1) in the off-diagonal entries.
All the entries are of higher-order moments and hence, the ’working’ multivariate normality
assumption structure is used to compute these entries as in [9,12].

As for the (T × 4) derivative matrix Dψ,

E(Y[1]
t Y[2]

t | Y
[1]
t−1, Y[2]

t−1)

= [κ12,t[µ
[1]
t (1 + µ

[1]
t )− ρ11(1 + ρ11)µ

[1]
t−1 − ρ2

11µ
[1]
t−1(1 + µ

[1]
t−1)− ρ12(1 + ρ12)µ

[2]
t−1

− ρ2
12µ

[2]
t−1(1 + µ

[2]
t−1)]

1
2 [µ

[2]
t (1 + µ

[2]
t )− ρ21(1 + ρ21)µ

[1]
t−1 − ρ2

21µ
[1]
t−1(1 + µ

[1]
t−1)

− ρ22(1 + ρ22)µ
[2]
t−1 − ρ2

22µ
[2]
t−1(1 + µ

[2]
t−1)]

1
2 + (ρ11Y[1]

t−1 + ρ12Y[2]
t−1 + µ

[1]
t − ρ11µ

[1]
t−1

− ρ12µ
[2]
t−1)× (ρ21Y[1]

t−1 + ρ22Y[2]
t−1 + µ

[2]
t − ρ21µ

[1]
t−1 − ρ22µ

[2]
t−1)] (14)

As for the estimates of κ12,t, they are estimated using the method of moments as follows:

κ12,t =
˜Cov(Y[1]

t , Y[2]
t )− (ρ̂11ρ̂22 + ρ̂12ρ̂21) ˜Cov(Y[1]

t−1, Y[2]
t−1)− ρ̂11ρ̂21(µ̂

[1]
t−1 +

ˆ
µ
[1]
t−1

2
)− ρ̂22ρ̂12(µ̂

[2]
t−1 +

ˆ
µ
[2]
t−1

2
)√

Var(R[1]
t )

√
Var(R[2]

t )
(15)

where µ̂
[k]
0 = µ̂

[k]
1 , ˜Cov(Y[1]

t , Y[2]
t )= 1

T ∑T
t=1(y

[1]
t − µ̂

[1]
t )(y[2]t − µ̂

[2]
t ) and

˜Cov(Y[1]
t−1, Y[2]

t−1)=
1

T−1 ∑T
t=2(y

[1]
t−1 − µ̂

[1]
t−1)(y

[2]
t−1 − µ̂

[2]
t−1).
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The Newton–Raphson iteration for the second GQL yields(
ψ̂r+1

)
=
(

ψ̂r
)
+ [Dψ

′
Σ̂ψ
−1Dψ]

−1
r [Dψ

′
Σ̂ψ
−1

(Yψ − µψ)]r (16)

where ψ̂r are the estimates at the rth iteration and [.]r are the values of the expression at the
rth iteration.

The regression estimates β̂ obtained from Equation (12) are used to solve Equation
(16) until convergence. These updated values of ψ̂ are in turn replaced in Equation (12)
to obtain a new set of regression parameters, which are again used to obtain a new set
of dependence parameters and this cycle continues until convergence of the two sets of
parameters. These estimates are consistent and under mild regulatory conditions, (ψ̂−ψ)

′

is asymptotically normal with a mean of 0 and a covariance matrix [Dψ
′
Σψ
−1Dψ]−1.

Forecasting Equations

The forecasting equations are derived as follows:
Given Y[k]

t , the forecasting function is expressed as

E(Y[1]
t+1|Y

[1]
t , Y[2]

t ) = µ̂
[1]
t+1 + ρ̂11(Y

[1]
t − µ̂

[1]
t ) + ρ̂12(Y

[2]
t − µ̂

[2]
t ), (17)

E(Y[2]
t+1|Y

[1]
t , Y[2]

t ) = µ̂
[2]
t+1 + ρ̂21(Y

[1]
t − µ̂

[1]
t ) + ρ̂22(Y

[2]
t − µ̂

[2]
t ) (18)

4. Simulation Study

In this section we generate BINAR(1) time series data with geometric marginals under
the following time-varying covariate design:

xt1 =


−cos(2πt) + 0.01 (t = 1, . . . , T/4)
sin(2πt) + 0.05 (t = (T/4) + 1, . . . , 3T/4)
cos(2πt) + 0.10 (t = (3T/4) + 1, . . . , T)

xt2 =


(1/t) (t = 1, . . . , T/4)
(−1/t) (t = (T/4) + 1, . . . , 3T/4)
t (t = (3T/4) + 1, . . . , T)

where µ
[k]
t = exp(xt1β

[k]
1 + xt2β

[k]
2 ). Assuming [ρ12, ρ21] = [0.5, 0.5], [ρ11, ρ22] =

[0.9, 0.9], [0.3, 0.9], [0.3, 0.3], β[1] = 0.5 and β[2] = 0.9 for t = 1, 2, . . . , T = 100, 500, 1000,
we generate R[k]

t using the inverse transformation method as in [13]. A total of 5000
Monte Carlo replications are made under the above combinations and the simulated mean
estimates are shown below:

From Table 1, we observe that the GQL estimates are consistent and that the cross-
correlation parameter κ12,1 is close to unity. In addition, as the time points increase, we
notice a decrease in the standard errors, with GQL yielding low standard errors as also
demonstrated in [14]. Some details on the number of non-convergent simulations include:
for ρ11 = ρ22 = 0.9 under GQL, around 360 simulations failed for T = 100, 300 for T = 500
and 220 for T = 1000. For ρ11 = 0.3 and ρ22 = 0.9, around 340 GQL simulations failed for
T = 100, 275 for T = 500 and 190 for T = 1000. However, when ρ11 = ρ22 = 0.3, the GQL
algorithms failed in 315 simulations for T = 100, 215 for T = 500 and 170 for T = 1000.
The failures were mainly due to either an ill-conditioned covariance matrix or the Hessian
structure in Equation (12). Hence, it is concluded from this section that GQL yields far
superior estimates than GLS and GMM, and constitutes of a slightly better non-convergent
computational problem.
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Table 1. GQL estimates of the parameters and standard errors under the non-stationary geometric
BINAR(1) model.

ρ11 ρ22 T Methods β̂
[1]
1 β̂

[1]
2 β̂

[2]
1 β̂

[2]
2 ρ̂11 ρ̂22 ρ̂12 ρ̂21 κ̂12,1

0.9 0.9 100 GQL 0.4823 0.4870 0.8876 0.8840 0.8819 0.8847 0.4859 0.4847 0.9815
(0.0910) (0.0931) (0.0977) (0.0946) (0.1163) (0.1115) (0.1125) (0.1153)

500 GQL 0.4923 0.4914 0.8950 0.8917 0.8942 0.8920 0.4945 0.4940 0.9909
(0.0517) (0.0512) (0.0547) (0.0585) (0.0649) (0.0625) (0.0623) (0.0630)

1000 GQL 0.4991 0.4988 0.8960 0.8981 0.8984 0.8994 0.5004 0.5006 0.9979
(0.0122) (0.0171) (0.0194) (0.0146) (0.0271) (0.0224) (0.0209) (0.0237)

0.3 0.9 100 GQL 0.4894 0.4891 0.8870 0.8840 0.2856 0.8868 0.4899 0.4888 0.9826
(0.0969) (0.0977) (0.0915) (0.0959) (0.1133) (0.1172) (0.1128) (0.1119)

500 GQL 0.4926 0.4927 0.8944 0.8959 0.2915 0.8928 0.4965 0.4940 0.9918
(0.0526) (0.0556) (0.0507) (0.0512) (0.0681) (0.0694) (0.0671) (0.0631)

1000 GQL 0.4995 0.4975 0.8969 0.8994 0.2988 0.8963 0.5008 0.5011 0.9995
(0.0137) (0.0175) (0.0111) (0.0141) (0.0213) (0.0293) (0.0251) (0.0221)

0.3 0.3 100 GQL 0.4823 0.4870 0.8804 0.8896 0.2812 0.2834 0.4854 0.4835 0.9819
(0.0981) (0.0911) (0.0931) (0.0928) (0.1169) (0.1160) (0.1135) (0.1197)

500 GQL 0.4929 0.4942 0.8910 0.8935 0.2964 0.2931 0.4920 0.4915 0.9913
(0.0594) (0.0589) (0.0562) (0.0580) (0.0614) (0.0621) (0.0677) (0.0681)

1000 GQL 0.4956 0.4992 0.8987 0.8990 0.2988 0.2980 0.5004 0.5001 0.9966
(0.0152) (0.0125) (0.0135) (0.0133) (0.0241) (0.0208) (0.0219) (0.0211)

5. Analysing the Time Series of Day and Night Road Accidents in Mauritius

In this section we analyse the monthly day and night accident series data in Mauritius
collected from January 2011 to January 2020 that connects the capital city of Port-Louis
and the tourist zone Grand-Bay, Mauritius, totalling 109 bivariate time series data. With
a sample cross-correlation of 0.3267, it is rationale to believe that there exists a cross-
correlation between the two series since both sets of data were collected on the same route.
The summary statistics illustrate that day and night accidents have means (variance) of
8.6422 (27.5652) and 4.2110 (13.1310), respectively. Given the significant over-dispersion,
the NSUBINAR(1)GEOM in Section 2 is applied to analyse the time series. The covariates
we consider are: number of speed cameras (SC) in this area, the number of police officers
deployed on street patrol in the different police stations in this area (PO), the number of
times the streets in the area have been re-maintained during the years (NS) and number of
roundabouts (RA) from Port-Louis to Grand-Bay.

Tables 2 and 3 show the regression estimates and the serial and dependence estimates
of the in-sample accident data from January 2011 to August 2019, totalling 104 paired
observations, while the out-sample data from September 2019 to January 2020 were used
to validate the model. Note, the in-sample data were also analysed using the NSCBI-
NAR(1)NB from [9] and the estimates were compared with the NSCBINAR(1)GEOM and
NSUBINAR(1)GEOM.

From Table 2, using the NSUBINAR(1)GEOM, we can note an expected decrease in the
number of day and night accidents by 9 and 5%, respectively, if there is an installation of an
additional speed camera along the motorway M2. As more police patrols are re-enforced
in the area, the number of accidents is expected to decrease by 9% during the day and
7% during the night. Similarly, better road maintenance contributes to a decrease in day
accidents by 7% and 6% in night accidents. Roundabout construction must be carefully
monitored as this factor leads to an expected increase in the number of day accidents by 6%
and 8% during the night. In comparison with the NSCBINAR(1)NB, the signs estimated
effects are the same as in NSUBINAR(1)GEOM with little fluctuation in the estimates and
their corresponding standard errors, but far better than NSCBINAR(1)GEOM. Using the
corresponding forecasting in Equations (17) and (18) and in [9], and based on the out-
sample observations from September 2019 to January 2020, Table 4 displays the RMSEs and
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mean absolute deviation (MAD) under the NSCBINAR(1)NB, NSCBINAR(1)GEOM and
NSUBINAR(1)GEOM.

Table 2. Monthly day and night accidents: GQL estimates of the regression parameters.

Model Time Series Intercept NS SC PO RA ĉ

Day Accidents 2.5353 −0.0815 −0.0942 −0.0934 0.0760 1.8475

s.e (0.0633) (0.0396) (0.0456) (0.0397) (0.0289) (0.0948)

NSCBINAR(1)NB Night Accidents 0.9272 −0.0790 −0.0671 −0.0824 0.0943 0.8965

s.e (0.0742) (0.0245) (0.0213) (0.0329) (0.0330) (0.0980)

Day Accidents 2.4445 −0.0824 −0.0952 −0.0955 0.0668

s.e (0.0560) (0.0273) (0.0314) (0.0215) (0.0164)

NSUBINAR(1)GEOM Night Accidents 0.9106 −0.0714 −0.0572 −0.0747 0.0817

s.e (0.0710) (0.0180) (0.0157) (0.0260) (0.0205)

Day Accidents 2.413 −0.0929 −0.0866 −0.0961 0.0852

s.e (0.0958) (0.0353) (0.0385) (0.0419) (0.0342)

NSCBINAR(1)GEOM Night Accidents 0.9623 −0.0876 −0.0894 −0.0785 0.0899

s.e (0.0952) (0.0367) (0.0387) (0.0375) (0.0345)

Table 3. Monthly day and night accidents: GQL estimates of the dependence parameters.

Model Time Series ρ̂ − Serial ρ̂ − Cross κ̂12,1

Day Accidents 0.2620 0.0065

s.e

NSCBINAR(1)NB Night Accidents 0.2941

s.e

Day Accidents 0.2748 0.0728 0.0025

s.e (0.0346) (0.0234)

NSUBINAR(1)GEOM Night Accidents 0.2438 0.0563

s.e (0.0388) (0.0191)

Day Accidents 0.2145 0.0034

s.e

NSCBINAR(1)GEOM Night Accidents 0.2442

s.e

Table 4. RMSE and MAD for the one step-ahead forecast for the number of monthly day and
night accidents.

Model RMSE RMSE MAD MAD
Y [1]

t Y [2]
t Y [1]

t Y [2]
t

NSCBINAR(1)NB 0.132 0.141 0.109 0.120

NSUBINAR(1)GEOM 0.120 0.129 0.098 0.104

NSCBINAR(1)GEOM 0.196 0.189 0.155 0.144

The standard errors, RMSE and MAD, illustrate that NSUBINAR(1)GEOM yields
almost the same measures as NSCBINAR(1)NB, but better estimates than the NSCBI-
NAR(1)GEOM.

6. Conclusions

In this paper, the unconstrained non-stationary BINAR(1) model with geometric
marginals was modelled. However, during the development of this model, it is observed
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that the joint probability function of the innovation series is rather complex to derive and
this limits the construction of a conditional likelihood function to estimate the unknown
model parameters. Hence, this paper proposes an alternative GQL estimation approach
that only requires the correct specification of the score and moment vectors. As for the
derivation of the higher-order entries of the auto-covariance matrix, the multivariate nor-
mality assumption was used. With regard to the simulation study, it is shown that the GQL
approach provides consistent parameter estimates and statistically more efficient estimates.
In the analysis of the accident data, reliable estimates of the different covariates were
obtained and comparable to NSCBINAR(1)NB and NSCBINAR(1)GEOM. The RMSE and
MAD show that NSUBINAR(1)GEOM yields better forecasts than the other two competing
models, a similar conclusion illustrated in [7]. This model is commendable to analyse
over-dispersed series under non-stationary setups characterized by time-dependent effects.
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