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Abstract: El Niño-Southern Oscillation (ENSO), a natural phenomenon in the Pacific Ocean, is caused
by cyclic changes in sea-surface temperature (SST) and the overlying atmosphere in the tropical
Pacific. The impact of ENSO varies, ranging from slightly warmer or colder temperatures to extreme
weather events such as flash floods, droughts, and hurricanes, affecting various regions around
the globe. Therefore, ENSO forecasting has paramount importance in the atmospheric and oceanic
sciences. The Oceanic Niño Index (ONI), a three-month running mean of SST anomalies over the
east–central equatorial Pacific region, is the commonly used metric for measuring ENSO events.
However, the literature shows that the forecasting accuracy of ONI for lead times exceeding one year
is low. This study aims to improve the forecast accuracy of ONI for up to 18 months lead time by
applying an Adaptive Graph Convolutional Recurrent Neural Network (AGCRNN). The graph-
learning module adaptively learns the spatial structure of features during training, while the graph
convolution in hidden layers of the recurrent neural network captures the temporal relationships of
features with ONI. Experiments conducted on simulation and reanalysis datasets demonstrate that
AGCRNN outperforms state-of-art statistical and eight dynamical models for forecasting ONI with
up to 18 months’ lead time.

Keywords: graph networks; deep learning; climate anomalies; spatial-temporal data mining

1. Introduction

El Niño-Southern Oscillation (ENSO) represents the climate variability in the tropical
Pacific Ocean caused by coupled ocean–atmosphere interactions and is associated with
severe rainfalls, floods, and droughts affecting both tropics and subtropics [1,2]. El Niño in
ENSO refers to the periodic warming of sea-surface temperature (SST) across the central
and east–central Equatorial Pacific Ocean. Southern Oscillation in ENSO refers to the
atmospheric component coupled with sea-surface temperature changes. The warm phase
of ENSO is known as El Niño, and the cold phase of ENSO is known as La Niña.

The commonly used metric for measuring ENSO events is the Oceanic Niño Index
(ONI). This is a three-month running mean of SST anomalies over the east–central equatorial
Pacific region (aka Niño 3.4 region) spanning between 5° N–5° S and 120° W–170° W. An El
Niño event is observed in the Niño 3.4 region if the ONI is +0.5 ◦C or higher, which means
that surface waters in the east–central equatorial Pacific are warmer than average by +0.5 ◦C
or higher for five consecutive months. Conversely, a La Niña event is observed in Nino
3.4 region if the ONI is−0.5 ◦C or lower, which means that surface waters in the east–central
equatorial Pacific are colder than average by −0.5 ◦C or lower for five consecutive months.

ENSO has a profound impact on global climate, with different impacts observed for
the warm (El Niño) and the cold phases (La Niña) of ENSO and the region being con-
sidered [3,4]. For instance, El Niño is typically linked with warm and dry conditions in
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the southeastern areas of Australia, Indonesia, the Philippines, and the central Pacific Is-
lands. Furthermore, prolonged El Niño episodes have caused droughts in India, Indonesia,
and Australia, and flash floods in the southern United States [5]. In contrast, La Niña is
often associated with wetter conditions in eastern Australia and severe rainfall in Indonesia,
the Philippines, and Thailand. Coastal Ecuador and northwestern Peru experience drier
than average conditions during La Niña. The prolonged La Niña episodes have caused
severe rainfall in India, Indonesia, and Australia and droughts in the southern United
States [6]. The impacts differ for the two opposite phases of ENSO and their evolutionary
patterns. For example, the transition from El Niño to La Niña or La Niña to El Niño caused
flash floods in the northeast regions of Asia. Overall, understanding the impact of ENSO
events is essential to predicting weather patterns and mitigating the risk of natural disasters.

The conventional approach to machine learning (ML) involves using the input features
of each observation to predict the output, which, in this case, determines ONI. However,
these features alone are insufficient for spatial–temporal (ST) prediction problems since
time and location are critical factors. In addition, forecasting ONI in a given period requires
multiple data points across the tropical Pacific, not just a single data point. Therefore,
making predictions across the tropical Pacific rather than relying on a single data point is
essential. In this study, we structured input features, such as SST and upper oceanic heat
content at various points across the Pacific region, in a proper spatial–temporal format over
the past three months to forecast ONI for an up to 18-month lead time.

ENSO events occur due to interactions between SST and the overlying atmosphere.
SST is a measurement of the ocean’s surface temperature and is defined only for the
ocean, so SST values are unavailable for land. However, deep learning models such as
convolutional neural networks (CNNs) require an image or grid-like input. To maintain
this grid-like input, missing SST values for land points are estimated using interpolation
methods. Unfortunately, this interpolation approach may result in incorrect predictions
due to errors being introduced in the training data. To address this challenge, we apply
an adaptive graph convolutional recurrent neural network (AGCRNN), a graph-based
approach to handling non-grid input: SST and upper oceanic heat content for the past
three months to forecast ONI with up to 18 months’ lead time.

In a graph network, a node represents a data point, and an edge represents the spatial
connectivity between a pair of data points. An adjacency matrix represents the spatial
distance or proximity between any two nodes, which, in this study, is learned adaptively
from the data during training. Experiments on simulation and reanalysis datasets indicate
that our proposed approach is superior to previous methods in terms of the correlation
coefficient (CC) and coefficient of determination (R2) for all lead times up to 18 months. The
rest of the paper is organized as follows. Section 2 reviews the selected literature on ENSO
forecasting, followed by a description of our dataset, given in Section 3. Section 4 elaborates
on the proposed methodology, and Section 5 discusses the results of the experiments.
Finally, Section 6 concludes the paper with a summary of the findings and directions for
future research.

2. Literature Review

Although not specifically used for forecasting ENSO events, the significance of location
and time in predicting and forecasting geographical phenomena has been underscored in
the literature, both theoretically [7,8] and experimentally [9,10]. The literature on ENSO
forecasting can be broadly classified into dynamical and statistical methods. The dynamical
methods represent the physical processes of ENSO forecasting, such as coupled ocean–
atmosphere interactions using complex numerical equations. These methods require
large-scale computational resources and can take several hours to generate predictions.
In contrast, statistical methods such as ours can extract meaningful patterns from historical
data and require fewer computational resources than dynamical models.
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2.1. Dynamical Methods

Zhang et al. [11] examined the changes in forecasting skills caused by changes in
SST anomalies in the Pacific after the year 2000. The ensemble of SST forecasts from
five dynamical models is evaluated. Another dynamical model, Climate Forecast System
version 2 (CFSv2) [12], forecasts SST at a 9-month lead time by considering the initial
conditions at the 0th, 6th, 12th, and 18th hour of every 5th day from 1982 to 2010. Therefore,
an ensemble of 24 (6 days × 4 timesteps) forecasts for each month is referred to as the
forecast for that month. The CC for a 9-month lead time is 0.34.

2.2. Statistical Methods

Linear models, such as least regression [13] and support vector machine [14,15],
and non-linear models, such as decision trees [16] and random forest [17], are used for
forecasting ENSO events. For example, in [13], the upper oceanic heat content and the
thermocline depth at 20 ◦C isotherm are the variables used for forecasting. Ensemble
learning is applied in both dynamical methods and statistical methods [17]. The three
models used in the ensemble classifier are the artificial neural network, random forest,
and nearest neighbor. The ensemble classifier uses the voting scheme to generate the final
prediction. It correctly predicted 12 out of 13 central Pacific El Nino, 20 out of 20 eastern
Pacific El Nino, 19 out of 26 La Nina, and 63 out of 64 neutral events. In a recent review [18],
the application of machine learning algorithms and their role in improving the prediction
skill of ENSO are discussed.

Recent studies applied artificial neural networks [19–21] convolutional neural net-
works (CNNs) [22–24], and recurrent neural networks [25–27] to ENSO forecasting. For ex-
ample, in [22], CNN outperformed state-of-the-art dynamical models and achieved a CC
of 0.5 for forecasting ONI for lead times of up to 17 months. Furthermore, the enhanced
version of CNN, called all season-CNN (A-CNN), proposed in [23] improves the CC from
0.3 to 0.4 for a lead time of 23 months. A variant of CNN, such as the dense convolu-
tional long short-term memory (DC-LSTM), is used in [28] for forecasting ENSO events.
A dense convolutional layer and a transposed convolutional layer are used to extract the
spatial features from the input, and multi-layer casual L-shaped LSTM is used to capture
the temporal dynamics of SST anomalies. In addition to SST, T300 (vertically averaged
oceanic temperature above 300 m), zonal wind, and meridional wind are used as predictors.
Their results conclude that additional predictors showed no correlation with ENSO events.
Although the performance of DC-LSTM is superior to that of CNN [22], the number of
trainable parameters is relatively higher. Other variants, such as deformable CNN [29] and
residual CNN [30], are also applied to forecast ENSO events.

Graph Neural Networks (GNNs) are the generalized version of CNNs that can handle
non-Euclidean/non-uniform data. GNNs work well for spatial data as they can model the
relationships between variables as graph edges. They are widely used in applications such
as intelligent transportation, earthquake prediction, recommendation systems, and social
media data-mining. However, it is surprising that GNNs are rarely applied in climate
science and weather forecasting. Therefore, this study applies a graph-based approach,
mainly AGCRNN, to forecast ONI for up to 18 months’ lead time. The main difference
between our work and the other graph-based ENSO prediction [27] is that we learn the
graph structure from the dataset during training, rather than learning a predefined graph
structure that can be incomplete and inaccurate. Then, we modify feed-forward connections
in the gated recurrent unit (GRU) with graph convolutions to capture the features’ spatial
structure and temporal relationships with ONI.

3. Data Description

This study uses historical simulation and reanalysis datasets to forecast ONI, which
is a three-month average of SST anomalies over the east–central equatorial Pacific region
ranging from 5° N–5° S to 120° W–170° W. The historical simulation data were collected
from 21 selected Coupled Model Intercomparison Project 5 (CMIP5) models. A single
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ensemble member from each CMIP5 model was chosen for 1860–2001. The reanalysis
datasets were collected from Simple Ocean Data Assimilation (SODA) and Global Ocean
Data Assimilation System (GODAS) for 1871–1973 and 1984–2017, respectively.

The study region contained both ocean and land data points (1728) collected across
0–360° E and 55° S–60° N with a 5° × 5° resolution, as shown in Figure 1. However, since
SST and upper oceanic heat content are defined only for the ocean, we excluded land
data points from our analysis, which resulted in 1345 data points, as shown in Figure 2.
The features used in the study were three months’ SST and upper oceanic heat content
anomalies measured at each point, and output was the ONI for a lead time of up to
18 months.

Figure 1. Data points are separated by 5° across latitude and longitude.

Figure 2. Data points are separated by 5° across latitude and longitude after excluding points on land.

4. Methodology

Data standardization is a common process to standardize features in ML. Since both
features (SST and upper oceanic heat content) have different ranges, we standardize them
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using the below equation, where x denotes a feature and xi denotes the value of that feature
at a single data point.

x̂i =
xi −mean(x)

standard deviation(x)
(1)

4.1. Problem Statement

Consider a time series X = {X:,1, . . . , X:,t, . . . }, where X:,t = {x1,t, x2,t, . . . xN,t}T ∈ RN×1

represents the observations recorded at N data points for time step t. Our goal is to predict
the future values of the time series based on historical values. We formulated a spatial–
temporal prediction problem to find a function F to forecast the next τ steps based on
previous T historical values:

{X:,t+1, X:,t+2, . . . , X:,t+τ} = Fθ(X;,t, X:,t−1, . . . , Xt−T+1) (2)

where θ denotes model parameters. The spatial correlations between different time se-
ries were formulated as a graph network. In an undirected graph network G(V, E, A),
V1, V2, . . . VN are the nodes of the graph, and E is the set of edges connecting the pairs
of nodes. A node represents a data point based on latitude and longitude, and an edge
represents the spatial connectivity between pair of data points. The adjacency matrix
A ∈ [0, 1] representing the proximity between nodes is an N × N matrix where each
entry Aij is the weighted representation of spatial similarity between nodes Vi and Vj.
If an edge exists between nodes Vi and Vj, then 0 < Aij < 1; otherwise, Aij = 0. Therefore,
the spatial–temporal prediction problem is modified by adding graph network G as follows:

{X:,t+1, X:,t+2, . . . , X:,t+τ} = Fθ(X;,t, X:,t−1, . . . , Xt−τ+1; G) (3)

4.2. Graph Learning Module (GLM)

Graph convolutional networks (GCNs) are applied in many domains, such as traffic
prediction, urban anomaly prediction, recommendation systems, molecular biology, and so-
cial network analysis. A multi-layer GCN with layer-wise propagation is approximated
using the first-order Chebyshev polynomial given by

Hl+1 = σ(D̃−
1
2 ÃD̃−

1
2 HlW l) (4)

Here, Ã = A + IN is the adjacency matrix of the graph G with self-connections, IN is
the identity matrix, D is the degree matrix and D̃ii = ∑j Ãij. W l is a layer-specific trainable
weight matrix. σ(·) denotes an activation function, such as the ReLU(·) = max(0, ·).
Hl ∈ RN×Dis the output of the lth layer and H(0) = X. More details of the first-order
approximation are given in [31]. Most GCNs for prediction tasks rely on a predefined
graph structure/adjacency matrix (A) computed using node distances or similarities to
perform graph convolutions. Nevertheless, this predefined structure might not encompass
all spatial dependencies, which can introduce bias into the model.

In this study, we used a graph learning module (GLM) to automatically infer the
hidden dependencies from the data. First, the AGLM randomly initializes a learnable
node-embedding matrix (EA ∈ RN×de ) for all nodes, where each row of EA represents
the embedding of a node and de represents the dimension of the node-embedding. Then,
we can infer the spatial dependencies between pairs of nodes by multiplying EA and ET

A.

To reduce the computational cost, we directly generated the Laplacian Matrix D̃−
1
2 ÃD̃−

1
2

using the following equation, where the SoftMax function normalizes the adaptive matrix.

D̃−
1
2 ÃD̃−

1
2 = So f tMax(ReLU(EA.ET

A)) (5)

During training, EA was updated automatically to learn the hidden dependencies
between data points and generate the adaptive matrix for graph convolutions. Finally,
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by incorporating GLM into GCN, we obtained an adaptive graph convolution network
(AGCN), given by the below equation:

Hl+1 = So f tMax(ReLU(EA.ET
A))HlW l (6)

4.3. AGCRNN

The local and global spatial patterns are captured hierarchically using AGCN layers.
However, to capture the temporal relationships, we proposed the use of AGCRNN by
replacing fully connected Gated Recurrent Unit (GRU) layers with AGCN. The equations
for AGCRNN are given by

Ã = So f tMax(ReLU(EET)) (7)

zt = σ(Ã[X:,t, ht−1]Wz + bz) (8)

rt = σ(Ã[X:,t, ht−1]Wr + br) (9)

ĥt = tanh(Ã[X:,t, r� ht−1]Wĥ + bĥ) (10)

ht = z� ht−1 + (1− z)� ĥt (11)

where [·] represents the concatenate operation, X:,t ht are input and output at time step t, �
represents element wise multiplication, and z and r represent the reset and update gate, respec-
tively. The trainable parameters of AGCRNN are embedding matrix E, weights WZ, Wr, Wĥ,
and bias bZ, br, bĥ. All parameters are trained using the backpropagation algorithm.

4.4. Implementation Details

The AGCRNN architecture comprises an embedding layer, two AGCRNN layers,
and a convolutional layer. The node-embedding layer takes the randomly initialized
graph as input and assigns each node a low-dimensional embedding vector. Additionally,
the node embeddings capture information about each node’s features and relationships
with other nodes in the graph. The AGCRNN layers perform graph convolution on the node
embeddings and dynamically adjust the graph structure during the convolution operation,
enabling the network to learn the spatial structure of SST and upper-ocean heat content and
their temporal relationships with ONI. Finally, a single convolutional filter with a kernel size
of (nodes × hidden dimension of the previous layer) maps the output of the last AGCRNN
layer to generate output. The AGCRNN’s network parameters are an embedding vector of
size 10 and hidden layer of size 64. We optimized the AGCRNN using the Adam optimizer
with a learning rate of 0.001 for a maximum of 100 epochs. Additionally, we implemented
an early-stopping algorithm that halts training if the validation loss does not improve in
the last 15 epochs. All parameters were selected through hyperparameter-tuning on the
validation set.

For CMIP5 and SODA datasets, 60% of the data are used for training, 20% for vali-
dation, and 20% for testing. For the GODAS dataset, due to the relatively low number of
samples (which might lead to overfitting), we followed the same procedure as detailed
in [23]. Therefore, we used CMIP5, SODA, and GODAS for training, validation, and testing.

4.5. Model Evaluation

The performance of AGCRNN was compared with CNN [22] and eight dynamical
models. Unfortunately, the results for the dynamical models are only available from 1984
to 2017. Therefore, for CMIP5 and SODA datasets, we compared the performance of
AGCRNN with CNN alone, and for the GODAS dataset, we compared AGCRNN with
CNN and dynamical models. Notably, only AGCRNN and CNN models were implemented
in this study, while the results of the dynamical models are borrowed from [22].
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We deployed two widely used regression metrics—correlation coefficient (CC) and
coefficient of determination (R2)—to compare the performance of the predictive models.
CC measures the strength of the relationship between actual and predicted values, while
R2 provides the variation in the actual values explained by the predictions. CC2 = R2 only
if the prediction model is a linear regression and the mean of the predicted values equals
the mean of the actual values. The mathematical formulation of these metrics is given
by the following equations, where yi and pi denote the values of observed and predicted
output for data point i and ȳ and p̄ indicate the mean of the output variable y and predicted
variable p, respectively.

R2 = 1− ∑i(pi − ȳ)2

∑i(yi − ȳ)2 (12)

CC =
∑i(pi − p̄)(yi − ȳ)

∑i(pi − p̄)2 ∑i(yi − ȳ)2 (13)

5. Results and Discussion
5.1. CMIP5 Dataset

In Figure 3, we compare the performance of CNN and AGCRNN for forecasting
ONI using the CMIP5 dataset. Our proposed model outperforms CNN for all lead times,
with a CC of greater than 0.9 for up to five months compared to CNN’s performance of up
to only two months. The rapid decrease in CNN’s performance after five months is due to
its poor handling of irregular data, such as the missing land points in our dataset, which
CNN fills with an average value. This approach can lead to a significant loss of information
and bias in the model. In contrast, our proposed model is specifically designed to handle
irregular data and uses graph-based operations to process the data effectively. Overall,
these results highlight the advantages of our proposed AGCRNN model over CNN for
forecasting ONI in the CMIP5 dataset.

Figure 3. Correlation Coefficient (CC) of CNN and AGCRNN in forecasting ONI for CMIP5 dataset.

In Table 1, we also compare the R2 values of our model with CNN. Once again, our
AGCRNN model outperforms CNN for all lead times, maintaining an R2 value of 0.5 for
up to 13 months’ lead time.

Table 1. Coefficient of determination (R2) of CNN and AGCRNN in forecasting ONI for CMIP5 dataset.

Lead Time in Months

Model 1 2 3 4 5 6 7 8 9

CNN 0.86 0.81 0.79 0.70 0.65 0.61 0.55 0.53 0.51
AGCRNN 0.97 0.93 0.90 0.85 0.81 0.78 0.73 0.69 0.65

10 11 12 13 14 15 16 17 18

CNN 0.46 0.42 0.41 0.37 0.33 0.32 0.30 0.25 0.21
AGCRNN 0.61 0.58 0.55 0.50 0.49 0.48 0.47 0.45 0.42
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5.2. SODA Dataset

Figure 4 compares the performance of AGCRNN and CNN for forecasting ONI using
the SODA dataset. Our proposed model outperforms CNN for all lead times. However,
the CC of both models on the SODA dataset is poorer than that of the CMIP5 dataset. This
can be attributed to the smaller sample size of the SODA dataset, making models more
susceptible to overfitting.

To further evaluate both models, we compare their R2 values in Table 2. Both models
perform similarly in terms of R2, indicating that a complex network structure does not
improve the model performance for smaller datasets. Based on the results from both
datasets, we conclude that the performance of AGCRNN improves for larger datasets.
In other words, the ACGRNN’s performance is proportional to the sample size, as is the
case for most deep-learning models.

Figure 4. Correlation Coefficient (CC) of CNN and AGCRNN in forecasting ONI for SODA dataset.

Table 2. Coefficient of determination (R2) of CNN and AGCRNN in forecasting ONI for SODA dataset.

Lead Time in Months

Model 1 2 3 4 5 6 7 8 9

CNN 0.72 0.64 0.60 0.55 0.47 0.42 0.41 0.45 0.42
AGCRNN 0.81 0.67 0.65 0.67 0.51 0.55 0.48 0.46 0.43

10 11 12 13 14 15 16 17 18

CNN 0.36 0.34 0.28 0.18 0.18 0.17 0.15 0.16 0.09
AGCRNN 0.38 0.36 0.32 0.19 0.20 0.19 0.18 0.19 0.12

5.3. GODAS Dataset

Figure 5 shows the CC of statistical models (AGCRNN and CCN) and dynamical
models (all other models) when forecasting ONI for various lead times using the GODAS
dataset from 1984 to 2017. Among all models, AGCRNN exhibits the highest forecast skill
for all lead times, surpassing both CNN and all other state-of-the-art dynamical models.
CNN is the second-best performer, followed by SINTEX-F. AGCRNN achieves a CC of
0.68 for an 18-month lead time, while CNN and SINTEX-F, the leading statistical and
dynamical models, achieve 0.48 and 0.345, respectively. Consequently, we can conclude
that AGCRNN can provide accurate ONI forecasts for up to 18 months of lead time. This
superior performance of AGCRNN can be attributed to its proper representation of input
features and adaptive graph structure, which capture the spatial structure of features and
their temporal relationships with ONI.

Table 3 compares the R2 values of statistical models since only CC values are available
for dynamical models. The R2 values of AGCRNN are close to those of CNN for lead times
up to 11 months. However, a substantial difference in R2 values for higher lead times
indicates that AGCRNN outperforms CNN in ONI forecasting.
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Figure 5. Correlation Coefficient (CC) of statistical models (CNN and AGCRNN) versus dynamical
models for GODAS dataset.

Table 3. Coefficient of determination (R2) of CNN and AGCRNN in forecasting ONI for GODAS dataset.

Lead Time in Months

Model 1 2 3 4 5 6 7 8 9

CNN 0.92 0.89 0.83 0.76 0.71 0.67 0.63 0.59 0.55
AGCRNN 0.94 0.90 0.86 0.82 0.78 0.73 0.69 0.66 0.63

10 11 12 13 14 15 16 17 18

CNN 0.52 0.48 0.46 0.43 0.38 0.36 0.35 0.31 0.28
AGCRNN 0.61 0.58 0.57 0.54 0.52 0.50 0.47 0.46 0.45

6. Conclusions and Future Directions

This study uses an adaptive graph convolutional recurrent neural network (AGCRNN),
a graph-based approach for forecasting ONI for up to 18 months’ lead time. Experiments on
reanalysis and simulation datasets demonstrate that AGCRNN outperforms CNN [18] and
eight dynamical models for all lead times. Specifically, for the 1984–2017 evaluation period,
AGCRNN achieves a CC of 0.68 for an 18-month lead time, while CNN and SINTEX-F,
the leading statistical and dynamical models, achieve 0.48 and 0.345, respectively.

Our future work involves including other variables, such as southern oscillation index,
warm water volume, and thermocline depth, as features, along with SST and upper ocean
heat content. We also plan to explore better GCN architectures to understand the spatial
structure of these features and their temporal relationships with ENSO.
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