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Abstract: In today’s world of large volumes of data, where the usual statistical estimation methods
are commonly inefficient or, more often, impossible to use, aggregation methodologies have emerged
as a solution for statistical inference. This work proposes a novel procedure for time series regression
modelling, in which maximum entropy and information theory play central roles in the replication of
time series, estimation of parameters, and aggregation of estimates. The preliminary results reveal
that this three-stage maximum entropy approach is a promising procedure for time series regression
modelling in big data contexts.
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1. Introduction

Understanding, predicting, and interpreting information collected over different peri-
ods of time (days, weeks, years, etc.) has been of major concern in recent decades. Time
series analysis, concerning longer or shorter periods, has been of major importance in vari-
ous areas, such as economics and finance, agriculture, meteorology, astronomy, medicine,
and health sciences, just to name a few. Current reality is characterized by large volumes
of data, generally complex, unstructured and/or non-homogeneous, which are usually
referred to as big data to emphasize the challenges they present to traditional computational
and statistical techniques. In many situations, it is not possible to treat all data as a whole,
either because of the inadequacy of the methodology or the insufficient computational
capacity available. In such situations, traditional methods of estimation become inefficient
and new statistical approaches are needed. The methodology adopted in this study was
contextualized in the reality described above and is presented here as an alternative tool to
deal with large volumes of data.

The strategy that is followed in this work is based on a three-stage maximum entropy
approach for time series analysis. We started by considering a given data set to which the
linear regression model could be applied, but represented a high computational burden
when considering estimation. Instead of trying to tackle this issue using the whole data
set, we started by considering only a few, say G, small samples or groups (with a few
observations, say Obs) that were extracted from the original data using a random sampling
procedure. The first step, after collecting the G small dimension random samples, was to
replicate each of them following the maximum entropy bootstrap methodology proposed
by H. D. Vinod [1,2]. Each replica could then be easily estimated using a proper estimation
procedure. In the second stage, the generalized maximum entropy (GME) estimator was
used to obtain estimates for the linear regression model parameters. Other estimators
could have been considered in this stage, but due to the stability of the GME estimator in
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ill-posed problems (which are common in a big data context) this estimator was chosen
for this work. Having an estimate for each parameter of the model and for each replica
obtained of each original small sample, it was time to aggregate this information and
obtain an overall estimate for each parameter of the model. Considering the total number
of replicas, the percentile method can be used to obtain a confidence interval with any
given confidence level for each of the model parameters (for a particular small sample
of G groups collected). Alternatively, an overall estimate for each of the G group can be
obtained by calculating the median of the estimates. As the normalized entropy is also
calculated for each replica, the median normalized entropy can be obtained for each of
the G samples. The third and last stage of the procedure consisted of aggregating the
G estimates into one single estimate for each model parameter. To accomplish this last step,
an entropy-based procedure was used once again, as the normalized entropy was used as
the weighting factor for the aggregated overall model parameter estimate. Details about
this aggregation technique, called neagging, can be found in [3,4]. This work reports the
first time these three maximum entropy-based procedures have been combined into one
single three-stage framework for regression analysis of time series. There are still many
details that need further exploration, such as the adequate number of small samples or
groups, G, and the proper number of observations per group, Obs, to consider; however,
the preliminary results presented here are promising and certainly deserve to be brought
to light.

2. Materials and Methods

This study considered daily available prices (USD; United States Dollar) for car-
bon dioxide (CO2) emissions, coal, natural gas, and Brent oil. Data from 2 July 2018 to
29 June 2022 were collected from Investing.com [5], considering only days with simulta-
neous information for all variables. The collected data for 994 days were considered a
“big data set” that could only be analyzed using an aggregation methodology. Naturally,
given the purpose of this work, the dimension was carefully chosen so that, although of
high dimension, it was still computationally tractable, and the results of the model with
994 observations could be compared with those from the aggregation methodology. It is
also important to note that the purpose of this work was not to provide an economic inter-
pretation of the regression model defined below, but rather to illustrate how the combined
methods may work in time series regression modelling scenarios. The methods considered
in this work for replication of time series, estimation of parameters, and aggregation of
estimates are briefly presented next.

2.1. Maximum Entropy Bootstrap for Time Series

The maximum entropy bootstrap for time series was proposed by H. D. Vinod [1,2];
a package (meboot) in the R software was developed by H. D. Vinod and J. López-de-
Lacalle [6]. The methodology creates a large number of replicates of the time series for
inference purposes (1000 replications were considered in this study). Those generated ele-
ments of the ensemble retain the shape of the original time series using maximum entropy
density, as well as the time dependence structure of the autocorrelation and the partial
autocorrelation functions. Moreover, and probably most importantly, the methodology
avoids all structural changes and unit root type testing, and all the usual shape-destroying
transformations, such as detrending or differencing, to achieve stationarity. Details of the
algorithm can be found in [6].

2.2. Generalized Maximum Entropy Estimation

The GME estimator was proposed by A. Golan, G. Judge, and D. Miller [7] based
on the maximum entropy (ME) principle of E. Jaynes [8,9] and the entropy measure of
C. E. Shannon [10]. Recently, A. Golan [11] presented a new area of research at the inter-
section of statistics, computer science, and decision theory, entitled info-metrics, in which
the GME estimator and other information–theoretic estimation methods are included. The
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GME estimator represents a stable estimation procedure in ill-posed models, namely in
ill-conditioned models, in underdetermined models, and when only samples of small size
are available for inference purposes (the micronumerosity problem).

Under GME estimation, the linear regression model y = Xβ + e, where y denotes a
(N × 1) vector of noisy observations, β is a (K× 1) vector of parameters to be estimated,
X is a (N × K) matrix of explanatory variables, and e is a (N × 1) vector of random errors,
needs to be reformulated as y = XZp + Vw, where Z is a (K × KM) matrix of support
spaces, V is a (N × NJ) matrix of support spaces, p is a (KM× 1) vector of probabilities to
be estimated, w is a (NJ × 1) vector of probabilities to be estimated, and M and J are the
number of points in the support spaces. The GME estimator can then be stated as

argmaxp,w
{
−p′ ln p−w′ ln w

}
, (1)

subject to the model and the additivity constraints y = XZp + Vw, 1K = (IK ⊗ 1′M)p

and 1N =
(

IN ⊗ 1′J
)

w, where ⊗ represents the Kronecker product. Using numerical
optimization techniques, because the statistical problem has no closed form solution, the
estimates of the parameters are given by β̂ = Zp̂. Additional details regarding GME
estimation can be found in [7,11–14].

2.3. Normalized Entropy Aggregating (Neagging)

Aggregation methods become useful in big data contexts, where a significant computa-
tional effort is required and traditional statistical estimation methods become inefficient or,
more often, impossible to apply. Normalized entropy aggregating (neagging) is based on
identifying the information content of a given (randomly selected) group of observations
(g = 1, 2, . . . , G) through the calculation of the normalized entropy; [3,4]. The aggregated
(global) estimate is given by

β̂ := ∑G
g=1 wg β̂g, (2)

where β̂g is the estimate in group g, wg ∝ 1− S(p̂)g, with S(p̂)g =
(
−p̂′ ln p̂

)
/(K ln M),

and ∑G
g=1 wg = 1. Thus, neagging consists of weighting the estimates obtained from the

GME estimator for each group g according to the information content of the group.

2.4. Statistical Model and Estimation Configuration

The regression model is defined as

CO2t = b0 + b1COALt + b2GASt + b3OILt + et, (3)

where CO2 represents the price of CO2 emissions, COAL represents the price of coal, GAS
represents the price of natural gas, OIL represents the price of Brent oil, t represents the
day, and e is the error component.

First, maximum entropy bootstrap was used to create 1000 replications of the four
series under study, using the package (meboot) in the R software [6]. Next, the four
parameters of the 1000 models were estimated using the GME estimator (implemented in
MATLAB by the authors) considering symmetric supports about zero in matrix Z, with
five (M = 5) equally spaced points, and the following lower and upper bounds: [−2, 2],
[−5, 5], [−10, 10], [−100, 100], and [−1000, 1000]. The use of five supports was intended to
illustrate different a priori information scenarios, and also to evaluate the performance of
the estimation process. Regarding the matrix V, the supports were defined symmetrically
and centered on zero with three (J = 3) equally spaced points, using the three-sigma rule
with the empirical standard deviation of the noisy observations, namely

[
−3σ̂y, 3σ̂y

]
.

With 1000 estimates for each parameter of the model in (3), the percentile method was used
to construct confidence intervals for each one at 90%, 95%, and 99%. The twelve confidence
intervals obtained from the 1000 models with 994 observations were then used to evaluate
the performance of neagging.
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Finally, to implement neagging in different scenarios, random sampling with replace-
ment was performed considering two different number of groups, G = 5 and G = 10,
where the numbers of observations per group were 20 (Obs = 20), 50 (Obs = 50), and 100
(Obs = 100). The parameters of the different models obtained by random sampling were
estimated using the GME estimator with the same configuration mentioned above. As
there were 1000 estimates and 1000 values of normalized entropy for each scenario, the
median of the 1000 estimates was considered the estimate of each parameter, and the value
of wg was obtained using the median (and the mean for comparison purposes; see next
section) of the 1000 values of normalized entropy.

3. Results and Discussion

The results obtained in this work are summarized in Table 1, in which the rows contain
the five different supports used: [−2, 2], [−5, 5], [−10, 10], [−100, 100], and [−1000, 1000].
For each support, two different numbers of groups were tested, G = 5 and G = 10. The
number of observations per group is represented in the columns of Table 1, where the
confidence intervals obtained by the percentile method for the confidence levels of 90%,
95%, and 99% are also listed. As these confidence intervals were calculated for each model
parameter, we had twelve confidence intervals per support that related to the model with
994 observations. To evaluate results from the aggregation methodology, we checked if
the overall aggregated confidence intervals, obtained for each of the random sampling
scenarios listed in Table 1, had the same sign of the corresponding confidence interval.
The best case scenario, evaluated for each of the 90 different scenarios tested, was four
correct identifications of the corresponding confidence intervals signs (one for each model
parameter), which we called four hits out of four. The worst case scenario would have been
zero hits, which did not occur. Table 1 presents the number of hits for each scenario tested.

Table 1. Number of hits in the comparison between confidence intervals for original data and overall
confidence intervals for aggregated data.

Supports G
Obs = 20 Obs = 50 Obs = 100

CI90 CI95 CI99 CI90 CI95 CI99 CI90 CI95 CI99

[−2, 2]
5 4 4 3 4 4 4 4 4 4

10 4 4 3 3 3 4 4 4 4

[−5, 5]
5 4 3 3 4 4 4 4 4 4

10 3 3 3 3 3 4 4 4 4

[−10, 10]
5 4 4 3 3 4 4 4 4 4

10 3 3 3 3 3 3 4 4 4

[−100, 100]
5 2 2 2 4 2 2 4 4 3

10 2 2 2 2 2 2 4 4 3

[−1000, 1000]
5 2 2 2 4 2 2 4 4 3

10 2 2 2 3 2 2 4 4 2

Note that the number of possible hits for each scenario was four, given that there were four model parameters
to estimate. Each confidence level listed in Table 1 is represented in the HDR graphs with the following color
correspondence: 99% CI—red, 95% CI—green, and 90% CI—blue.

The weighting of the estimates obtained from the GME estimator for each group
according to the information content of the group—the neagging procedure—was done
considering two alternative forms: using the median and the mean of the normalized
entropy. The results are presented in a single table because they were exactly the same in
terms of the number of hits. This equality of the median and the mean can be explained by
the fact that the wg of the median and the mean were very close.

The discussion of the results in Table 1 has two focuses of analysis. The first one,
looking at the lower amplitude supports [−2, 2], [−5, 5] and [−10, 10], where it is expected
that this lower amplitude comes from the fact that the user has a lot of information about the
model (relating to a situation of a high a priori information), and the second one, looking at
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the supports [−100, 100] and [−1000, 1000], with greater amplitude, where it is expected
that the user has little information about the model (low a priori information scenarios).

In the first case, where the supports have smaller amplitude, it can be seen that with
less observations per group (20 and 50), as the amplitude of the supports decreases, the
number of hits increases and the results improve in cases where the aggregation is done
with a smaller number of groups. However, the results are better for the scenario with
50 observations, when compared to the scenario with 20 observations. Finally, in the
scenario with samples of 100 observations, the normalized entropy aggregation procedure
presents 100% of hits in all supports [−2, 2], [−5, 5] and [−10, 10], regardless of the number
of groups.

For the second case, where we have little information about the model and the supports
are of greater amplitude, whatever the support [−100, 100] or [−1000, 1000], it can be seen
that as the number of observations increases, the number of hits improves significantly, and
for 50 and 100 observations it improves even more when the number of groups decreases
from 10 to 5.

Therefore, in general, we can say that the results improve as the number of observa-
tions increase and the amplitude of the supports decrease, as well as the number of groups.

Looking at the highest density region (HDR) graphs below, which represent the model
with 994 observations, we can see that the constant (b0) in Figure 1 and the coefficient
b2 in Figure 2 are not statistically significant, as all confidence intervals (at confidence
levels of 90%, 95%, and 99%) include zero. On the other hand, coefficients b1 and b3 can
be considered statistically significant, as the corresponding confidence intervals do not
include zero at any confidence level tested.
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Figure 1. HDRs for the sampling distribution of estimates of b0 and b1.

Figure 3 shows the trend in the price of CO2 emissions. Figure 4 (on the left) shows
trends in the price of coal, the price of natural gas, and the price of Brent oil in the period
under study. Figure 4 (on the right) highlights only the price of natural gas, because it is
not clear in the figure on the left.
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Figure 4. Prices of coal, natural gas, and Brent oil (left), and the price of natural gas (right).

The values for all observed variables had an increasing trend, including the one
represented separately in the graph on the right.

4. Conclusions

Recently, a two-stage maximum entropy approach for time series regression modelling
was proposed in the literature [14]. This work extends that idea to big data contexts by
adding a third stage with the neagging procedure. Although further research is needed,
the preliminary results reveal that this three-stage approach, in which maximum entropy is
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used in replication of the time series, estimation of parameters, and aggregation of estimates,
is a promising procedure in big data contexts. As future work, an exhaustive simulation
study is being planned to investigate the adequate number of groups and the adequate
number of observations per group. Additionally, comparisons with other aggregation
methods, such as bagging, are expected to be analyzed, in order to explore the advantages
and disadvantages of this three-stage approach.
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