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Abstract: Most real time series exhibit certain characteristics that make the choice of model and its
specification difficult. The objective of this study is to address the problem of parameter estimation
and the accuracy of forecasts k-steps ahead in non-stationary time series with outliers in the context
of state-space models. In this paper, three methods for detecting and treating outliers are proposed.
We also present a comparative study of the proposed methods using data simulated from a local
level model with sample sizes of 50 and 500 and with various combinations of parameters, with a
5% contamination error rate of the observation equation. The results were evaluated in terms of the
accuracy of model parameters and the forecasts k-steps ahead, as well as the detection rate of true
outliers. These methodologies are applied to three real examples. This study shows that the local
level model is sufficiently robust even for non-stationary contaminated series, in the sense that they
are able to handle non-stationary time series and outliers in a satisfactory way.

Keywords: outliers; contaminated data; non-stationary time series; state-space models; Kalman filter;
simulation study

1. Introduction

State-space models were originally developed in aerospace engineering in the early
1960s for the purpose of monitoring and correcting the trajectory of a spacecraft headed to
the moon. Today, these models have wide applicability in many areas, such as finances [1],
ecology [2], machine learning [3], and time series analysis and forecasting [4–7]. These
models, associated with the Kalman filter algorithm [8], are a very powerful tool given
their ability to update predictions both in real time and in a recursive procedure as new
observations of the time series become available, thus improving the accuracy of predictions.
In addition, state-space models are very flexible due to their ability to incorporate fixed
effects and stochastic components that can represent the different unobserved components,
such as periodic structures, trends, seasonality, and temporal correlation. These components
describe the structural variation of the time series under study. Furthermore, potential
covariates can be added because they are important to explain the process and complement
the information introduced by the different stochastic components of the model. These
models include two sources of variability: one corresponding to measurement errors and
the other to process variations. In this way, it becomes simpler to interpret both errors
separately. One advantage of these models is that they do not require the assumption
of stationarity and can handle time series with missing values in a particularly simple
way [4,9]. However, the existence of outliers in real data can influence the estimation and
prediction accuracy of both the parameters.
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Outliers can be a problem for model specification and prediction accuracy, since the
Kalman filter is not generally robust to the presence of outliers. An incorrectly specified
model can lead to incorrect covariance matrices of predictions given by the Kalman filter,
and thus there is no way to describe the actual quality of the filter [10]. According to [11],
the presence of outliers in a time series can induce non-Gaussian heavy-tailed noise, leading
to misspecified models, biased estimates, and inaccurate forecasts. The authors of [12]
showed that simple linear Gaussian state-space models can present estimation problems.
Therefore, in this paper, several methods of detecting and treating outliers are discussed.
These methods will be compared and illustrated with a simulation study that considers a
simple Gaussian stationary state-space model with 5% data contamination. To create the
non-stationarity scenario, the local level model, which is a particular case of the state-space
model, will be considered for the sake of simplicity. Detection and treatment of the methods’
performance is evaluated by the root-mean-square error (RMSE) and the mean absolute
error (MAE) of the Gaussian likelihood of the parameters’ estimates and the one-step
ahead predictions of the time-series variable. Several scenarios are considered accounting
for different combinations of parameters and times series sizes, n in this specific case,
(n = 50,500). Time series simulations are generated until 1000 time series have a state-space
model with valid estimates, i.e., estimates within the space parameter.

2. Methodologies

The univariate state-space model can be represented by the observation and state
equations, respectively, given by

Yt = Wtβt + et (1)

βt = µ + φ(βt−1 − µ) + εt (2)

where t represents the time, Yt is the observed data, Wt is a factor assumed to be known
that relates the observation Yt to the latent variable βt at time t. The disturbances et and εt
are independent and identically distributed, with Gaussian distribution of zero mean and
variances σ2

e and σ2
ε , respectively, and are uncorrelated with each other.

The state βt is a latent variable and therefore must be estimated. The Kalman filter
algorithm ([8]) provides optimal unbiased linear one-step ahead and update estimators
of the unobservable state βt. Let Θ = {φ, σ2

e , σ2
ε } be the vector of the model’s unknown

parameters, let β̂t|t−1 denote the predictor of βt based on the observations Y1, Y2, . . . , Yt−1

and Pt|t−1 be its mean square error, i.e., E[(β̂t|t−1 − βt)2]. The one-step ahead forecast for
the observable vector Yt is given by Ŷt|t−1 = Wt β̂t|t−1. When, at time t, Yt is available,
the prediction error or innovation, ηt = Yt − Ŷt|t−1, is used to update the estimate of βt
(filtering) through the equation

β̂t|t = β̂t|t−1 + Ktηt,

where Kt is called the Kalman gain and is given by Kt = Pt|t−1Wt(W2
t Pt|t−1 + σ2

e )
−1. The

mean square error of the updated estimator β̂t|t, represented by Pt|t, verifies the relationship
Pt|t = Pt|t−1 − KtWtPt|t−1. Furthermore, the predictor of βt+k at time t is given by

β̂t+k|t = µ + φk
(

β̂t|t − µ
)

,

and its mean square error is Pt+k|t = φ2kPt|t + ∑k−1
i=0 φ2iσ2

ε .

Outlier Detection and Treatment Procedures

Three approaches to outlier detection and treatment are presented. The first approach
is based on linear interpolation, which represents the naive method. The other two ap-
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proaches are based on iterative processes from the robust Kalman filter and from the
Kalman filter in the missing values perspective.

1. Linear interpolation (LI)

• Outlier detection: Observations are considered outliers if they are less than
Q1 − 1.5IQR or greater than Q3 + 1.5IQR, where Q1 and Q3 denote the first
and third quartiles, respectively, and IQR (interquartile range) is the difference
between the third and first quartiles (IQR rule).

• Outlier treatment: Any outliers that are identified are replaced by LI using the
neighbouring observations [13].

2. Iterative method based on the robust Kalman filter (RKF)

• Outlier detection: Outlier detection is performed by applying the IQR rule on
the standardized residuals after fitting a state-space model to the data.

• Outlier treatment: An alternative to the state estimator β̂t|t, inspired by the
work by [14] and subsequently by [15], is proposed. In this approach, the state
prediction β̂t|t is replaced by

β̂∗t|t = argmin
β

{(
β̂t|t−1 − β

)2
P−1

t|t−1 +
(
Yout

t −Wtβ
)2

σ−2
e

}
(3)

where Yout
t is an identified outlier that is replaced by Ŷ∗t = Wt β̂

∗
t|t. This proposal

considers the robust version of the Kalman filter only at moments at which
outliers are detected, as opposed to the original work, in which it is applied at all
moments. In the end, the model is iteratively fitted j times to the corrected time
series until ‖Θ̂(j)

ML − Θ̂(j−1)
ML ‖ < δ, j ∈ N, or for some value j.

3. Iterative method based on the Kalman filter for time series with missing values (naKF)

• Outlier detection: Outlier detection is performed by applying the IQR rule to
the standardized residuals after fitting a state-space model to the data.

• Outlier treatment: Outlier observations Yout
t are assumed to be missing val-

ues and the state estimator β̂t|t and its mean square error P∗t|t are replaced by

β̂∗t|t = β̂t|t−1 and P∗t|t = Pt|t−1, respectively. The missing observations Yout
t are re-

placed by Ŷ∗t = Wt β̂
∗
t|t and the state-space model is fitted j times to the corrected

time series until ‖Θ̂(j)
ML − Θ̂(j−1)

ML ‖ < δ, j ∈ N, or for some value j.

The aim of this paper is to investigate under which conditions the presence of outliers
affects the estimation of parameters and states in the state-space model and to propose
competitive approaches for outlier detection and treatment. Thus, we simulate time series
of size n (n = 50,500), considering for all simulation studies the local level model, which is
a simple and particular case of the state-space model (2)–(4), where Wt = 1, ∀t and φ = 1,
which will be used to illustrate the non-stationary case. The local level model is given by:

Yt = βt + et (4)

βt = βt−1 + εt
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In the literature, some approaches have been proposed for the initialization of the
Kalman filter for non-stationary stochastic processes. Perhaps the best known is the
diffuse initialization ([16]). In this paper, we will use the approximate diffuse initialization,
assuming a zero mean and a very large variance of the state (σ2

e × 107).
This study examines two distinct situations: one characterized by non-contaminated data,

i.e., the clean data where et∼N(0, σ2
e ); εt∼N(0, σ2

ε ), and the other involving data that has been
contaminated at a rate of p = 0.05, i.e., et∼(1− p)N(0, σ2

e ) + pN(10σe, σ2
e ); εt∼N(0, σ2

ε ).
For each of the scenarios, the simulation design was formulated with a sample sizes

of n = (50,500), and σ2
ε and σ2

e (0.10, 1.00, 0.05). For each parameter combination, 1000
replicates with valid estimates were considered, i.e., σε > 0, and σe > 0; It was considered
as convergence criteria ‖Θ̂(j)

ML − Θ̂(j−1)
ML ‖ < 10−4 or until j = 100. To initialize the Kalman

filter, µ1 = 0 and P1 = σ2
e × 107 was taken.

To evaluate the quality of the parameter estimates and the k-steps ahead forecasts, it
was considered that

• RMSE(Θ) =

√
1
n ∑n

i=1

(
Θi − Θ̂i

)2
;

• MAE(Θ) = 1
n ∑n

i=1

∣∣∣Θi − Θ̂i

∣∣∣.
To evaluate the rate of true outliers detected, two rates were used rate 1 = A/B; rate 2 =

A/C, where A is the number of true outliers detected, B is the total number of outliers
detected by the method (total number of true and false outliers), and C is the total number
of true outliers.

3. Results

In this section, the results obtained from the proposed methodologies are presented.
The results of the simulation study are represented in the first subsection. In the second sub-
section, the application of outlier detection and treatment methodologies are demonstrated
via three illustrative examples.

3.1. Simulation Results

Tables 1 and 2 show the RMSE and MAE of the local level model parameters and
the one-step ahead forecasts for sample sizes n = 50 and n = 500 for the simulation
study, respectively. In most scenarios, the methodologies improved the accuracy of model
parameters and one-step ahead forecasts. However, this improvement was minimal. In fact,
there are scenarios where the RMSE and MAE evaluation measures are lower in the non-
treated case compared to when outliers are treated; for example, for the scenario n = 500,
σ2

ε = 0.10 and σ2
e = 0.05. In particular, LI performed least favourably in comparison to

RKF and naKF, especially to estimate the variance of the observation error σ2
e . For example,

for n = 500, σ2
ε = 0.10 and σ2

e = 1.00, in the case of treating outliers by LI, the RMSE
of σ2

e was 2.0559, while for RKF it was 0.2428 and for naKF it was 0.1168. Overall, it can
also be seen that naKF was the method that showed the better performance to improve
the accuracy of the parameters and one-step ahead forecasts, especially for n = 500. The
proposed methodologies had problems in improving the accuracy of the estimates of
the level variance σ2

ε . Finally, regarding the detection of outliers, it is clearly seen the
advantage of identifying outliers over standardized residuals, whose means of rate 1 and 2
were higher.
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Table 1. Root-mean-square error (RMSE), mean absolute error (MAE), rate 1, and rate 2 of Θ with
1000 simulations of non-stationary time series of sample sizes n = 50, considering Gaussian errors
(NC = non-contaminated; C = contaminated; RKF = robust Kalman filter; naKF = Kalman filter for
time series with missing values).

Parameters RMSE MAE Outlier Mean Mean

σ2
ε σ2

e σ2
ε σ2

e Ŷt|t−1 vs. Yt σ2
ε σ2

e Ŷt|t−1 vs. Yt Detection Rate 1 Rate 2

0.10 0.05

NC 0.0416 0.0276 0.4271 0.0335 0.0217 0.3399 - -

C 0.0621 0.2614 0.5243 0.0475 0.2214 0.4033 - -

LI 0.0584 0.1772 0.4910 0.0438 0.1286 0.3781 Time series 84% 42%

RKF 0.0665 0.0910 0.4910 0.0456 0.0718 0.3781 Standardized
74% 88%

naKF 0.0536 0.0556 0.4667 0.0393 0.0337 0.3607 residuals

1.00 0.10

NC 0.3114 0.1453 1.0734 0.2488 0.1088 0.8539 - -

C 0.4638 0.6275 1.2216 0.3644 0.4951 0.9507 - -

LI 0.4255 0.5723 1.2127 0.3432 0.4499 0.9421 Time series 45% 8%

RKF 0.4216 0.4347 1.2048 0.3384 0.3422 0.9387 Standardized
61% 42%

naKF 0.4285 0.3821 1.2210 0.3422 0.2706 0.9383 residuals

0.10 1.00

NC 0.0840 0.2456 1.1675 0.0618 0.1977 0.9326 - -

C 14.5332 468.2479 1.4690 1.3638 77.8606 1.1298 - -

LI 0.1025 0.3266 1.1653 0.0719 0.2373 0.9250 Time series 91% 99%

RKF 0.3768 0.5958 1.2860 0.1245 0.3587 0.9876 Standardized
78% 98%

naKF 0.4510 0.3155 1.2844 0.1582 0.2525 0.9620 residuals

0.05 0.10

NC 0.0275 0.0329 0.4413 0.0212 0.0260 0.3517 - -

C 0.0564 0.4242 0.5416 0.0333 0.3516 0.4180 - -

LI 0.0343 0.1501 0.4663 0.0237 0.0830 0.3652 Time series 91% 83%

RKF 0.0586 0.0710 0.4914 0.0327 0.0557 0.3798 Standardized
75% 97%

naKF 0.0476 0.0391 0.4714 0.0279 0.0294 0.3635 residuals

3.2. Illustrative Examples

In this subsection, a comparative analysis of the proposed outlier detection and
treatment methods using the local level model is presented based on three illustrative
examples. The aim is to evaluate the performance of the methodologies from a practical
point of view, in terms of outlier detection and treatment and validation of the assumptions
(normality and independence of residuals). The three time series that present outliers and
are used for illustrative purposes are the following:

• TS1: Number of earthquakes per year of magnitude 7.0 or greater, between 1900 and
1998 (Figure 1);

• TS2: Kiewa River at Kiewa, Victoria, Australia, between 1885 and 1954 (Figure 2);
• TS3: Tree: Beyond Burn, Australia. Pencil Pine, between 1028 and 1975 (Figure 3).

The data is available on GitHub (https://github.com/FinYang/tsdl (accessed on
27 June 2023)) in the Time Series Data Library (TSDL), created by Professor Rob Hyndman.

The data was divided into a training sample (80%) and a test sample (20%). TS1
presents one outlier in the training sample corresponding to the year 1943; TS2 presents
one outlier in the training sample (1916) and one in the test sample (1955). TS3 presents 18
outliers in the training sample (16 outliers before 1335 and two outliers corresponding to
the years 1770 and 1777, respectively) and three outliers in the test sample, namely 1972,
1973 and 1975.

https://github.com/FinYang/tsdl
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The results of the local level model fit to the three time series are shown in Table 3.

Table 2. Root-mean-square error (RMSE), mean absolute error (MAE), rate 1, and rate 2 of Θ with
1000 simulations of non-stationary time series of sample sizes n = 500, considering Gaussian errors
(NC = non-contaminated; C = contaminated; RKF = robust Kalman filter; naKF = Kalman filter for
time series with missing values).

Parameters RMSE MAE Outlier Mean Mean

σ2
ε σ2

e σ2
ε σ2

e Ŷt|t−1 vs. Yt σ2
ε σ2

e Ŷt|t−1 vs. Yt Detection Rate 1 Rate 2

0.10 0.05

NC 0.0138 0.0086 0.4315 0.0109 0.0068 0.3443 - -

C 0.0170 0.2228 0.5303 0.0137 0.2187 0.4115 - -

LI 0.0184 0.2156 0.5561 0.0147 0.2112 0.4193 Time series 52% 4%

RKF 0.0189 0.0696 0.4913 0.0146 0.0684 0.3822 Standardized
77% 91%

naKF 0.0181 0.0133 0.4656 0.0137 0.0103 0.3613 residuals

1.00 0.10

NC 0.1156 0.0524 1.0891 0.0934 0.0419 0.8685 - -

C 0.1376 0.4955 1.2374 0.1112 0.4775 0.9679 - -

LI 0.1454 0.4962 1.3117 0.1165 0.4788 0.9915 Time series 19% 1%

RKF 0.1366 0.3261 1.2226 0.1102 0.3114 0.9550 Standardized
65% 41%

naKF 0.1643 0.2065 1.2561 0.1272 0.1803 0.9634 residuals

0.10 1.00

NC 0.0235 0.0771 1.1685 0.0188 0.0610 0.9324 - -

C 0.0351 4.7013 1.4334 0.0275 4.6231 1.1320 - -

LI 0.0341 2.0559 1.2754 0.0242 1.3978 1.0019 Time series 94% 68%

RKF 0.0299 0.2428 1.2191 0.0227 0.2255 0.9664 Standardized
89% 100%

naKF 0.0423 0.1168 1.1950 0.0254 0.0976 0.9436 residuals

0.05 0.10

NC 0.0086 0.0100 0.4466 0.0068 0.0079 0.3561 - -

C 0.0125 0.4614 0.5647 0.0098 0.4517 0.4417 - -

LI 0.0119 0.3605 0.5628 0.0094 0.3348 0.4290 Time series 81% 23%

RKF 0.0116 0.0722 0.4893 0.0088 0.0702 0.3854 Standardized
84% 99%

naKF 0.0104 0.0129 0.4617 0.0077 0.0106 0.3644 residuals
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Figure 1. Number of earthquakes per year of magnitude 7.0 or greater, between 1900 and 1998 (TS1).
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Figure 2. Kiewa River at Kiewa, Victoria, Australia, between 1885 and 1954 (TS2).
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Figure 3. Tree: Beyond Burn, Australia. Pencil Pine, between 1028 and 1975 (TS3).

Table 3. Parameter estimates and respective standard errors of the non-stationary state-space model
(local level model); LI—linear interpolation; RKF—robustified Kalman filter; naKF—Kalman filter for
time series with missing values.

σε σe
log L

Estimate (SE) Estimate (SE)

TS1

Non-treated 2.7103 (0.6932) 4.8341 (0.5760) −192.8515
LI 2.6438 (0.6735) 4.6330 (0.5578) −190.1958

RKF 2.9174 (0.6983) 4.0890 (0.5653) −185.7237
naKF 3.0671 (0.7237) 3.8387 (0.5844) −183.6041

TS2

Non-treated 1.6446 (0.8822) 9.3662 (0.9774) −170.7793
LI 1.2913 (0.7006) 7.8502 (0.8092) −161.2743

RKF 1.1704 (0.6859) 7.7522 (0.7959) −160.3136
naKF 1.0999 (0.6905) 7.7692 (0.7967) −158.2455

TS3

Non-treated 0.0623 (0.0058) 0.1054 (0.0046) 1096.8770
LI 0.0597 (0.0057) 0.0971 (0.0045) 1149.8800

RKF 0.0614 (0.0055) 0.1000 (0.0044) 1129.9350
naKF 0.0601 (0.0055) 0.1020 (0.0044) 1124.1500

After fitting the model to the non-treated data, outliers were detected in the standard-
ized residuals, and these outliers were treated in the two iterative methods, RKF and naKF.
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In TS1, two outliers were detected (1943 and 1957). In example TS2, the detected outlier
initially remained (1916). Finally, in TS3, where eighteen outliers were initially detected,
after the adjustment the residuals showed eight outliers, of which three (1042, 1158 and
1777) were initially detected in the time series.

Table 4 shows the observed evaluation measures and predicted values in the test
sample. This table highlights the lowest RMSE and MAE values, with the naKF method
performing best. However, the difference between these values is minimal, especially in the
case of TS3; therefore, these results are in line with those obtained in the simulation study.

Table 4. Root-mean-square error (RMSE) and mean absolute error (MAE) between the observed and
forecasted values via the local level model in the test sample.

Non-Treated LI RKF naKF

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

TS1 Yt vs. Ŷt+k|t 7.0245 6.0496 7.0087 6.0353 6.8205 5.8609 6.7342 5.7788
Percentage reduction - - 0.22% 4.14% 2.90% 3.12% 4.13% 4.48%

TS2 Yt vs. Ŷt+k|t 11.4091 8.1459 11.3624 8.1456 11.2833 8.1455 11.2249 8.1455
Percentage reduction - - 0.41% 0.004% 1.10% 0.01% 1.61% 0.01%

TS3 Yt vs. Ŷt+k|t 0.3759 0.3231 0.3757 0.3229 0.3756 0.3228 0.3742 0.3213
Percentage reduction - - 0.05% 0.06% 0.08% 0.09% 0.45% 0.56%

Figures 4–6 show TS1, TS2 and TS3 in black, respectively, the forecasts in red, and the
95% prediction intervals using naKF for the treatment of outliers. The amplitude of the
prediction intervals for TS1 (Figure 4) and TS3 (Figure 6) show a considerable increase over
time, whereas for TS2 (Figure 5) this increase is minimal, and the interval does not cover all
the observations in the test sample.
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Figure 4. TS1 (black), the k-steps ahead forecasts (red) and the 95% prediction intervals using naKF
(red shadow).

Regarding the analysis of the model assumptions, the residuals should behave sim-
ilarly to white noise. Normality was verified for all models and for all time series:
Kolmogorov–Smirnov p values between 0.398 (RKF and TS2) and 0.967 (RKF and TS1). The
models for TS1 and TS2 verified the independence assumption: p values ranging between
0.314 (non-treated and TS1) and 0.574 (NA and TS1) from the Ljung–Box test. However, this
assumption was not verified for TS3 (all p values of the Ljung–Box test were less than 0.003).
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Figure 5. TS2 (black), the k-steps ahead forecasts (red) and 95% prediction intervals using naKF
(red shadow).
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Figure 6. TS3 (black), the k-steps ahead forecasts (red) and 95% prediction intervals using naKF
(red shadow).

4. Discussion

In this work, three methods for detecting and treating outliers in time series were
proposed. This study highlighted the problem of contaminated non-stationary time series
from a state-space modelling perspective. To study the impact of outliers on parameter
estimates and the observation forecasts, and to make a comparative analysis of the proposed
methods, a simulation study was conducted with sample sizes of 50 and 500 with various
combinations of parameters, generated using a non-stationary local level model. The
data were contaminated at a 5% error rate of the observations. It was found that the
proposed methods overall improved the accuracy of the parameters and forecasts; however,
this improvement was minimal compared to the contaminated data. The treatment of
outliers by naKF and RKF were found to be the most favourable, therefore highlighting the
performance of naKF. LI was overall performed the worse. These proposed methodologies
were applied to three real time series, where the same conclusion was drawn. In other
words, in view of the study’s results, the state-space models are generally sufficiently
robust, given that they are able to handle non-stationary time series and outliers in a
satisfactory way.
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