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Abstract: This article presents a Johansen test assessing the predetermined long-term relationships
of datasets from a photovoltaic (PV) plant to predict the power output of an island zone. The goal
was to use Johansen’s model to predict the PV power generation in the island of Mauritius. In
this article, time series using an on-site measurement dataset have been used to design an original
prediction model, the Johansen model for PV power output. This model is trained to predict random
monthly, weekly, and daily PV power outputs in different seasons and years. The experimental
results demonstrate that the Johansen model is a powerful medium-term predicting tool.

Keywords: predicting; cointegration; Johansen

1. Introduction

Islands close to the Indian Ocean require imports of primary energy resources such
as natural gas, coal, and fossil energy to meet everyday requirements. Therefore, in
response to the severe climate change and global energy crisis, the government of Mauritius
has outlined its intention to oversee and promote solar photovoltaic (PV) technologies
through the local electricity public utility company. However, the accurate prediction and
integration of PV energy must be preceded by better planning and distribution strategies
to ensure the stability of electrical grid energy.

Systems transform solar energy into electric power. Accurate photovoltaic power
generation is linked to the accurate forecasting of solar irradiance. Thus, most research
studies are based on solar irradiance forecasting, and several forecasting methods have been
cited in the literature [1–4], ranging from physical [5,6] to machine learning methods [7,8]
via classical statistical techniques. The latter have been classified as linear stationary
models, which is mainly where Auto-Regressive Moving Average (ARMA) models and
Vector Auto Regressive (VAR) are concerned, or linear non-stationary models, e.g., Auto-
Regressive Integrated Moving Average (ARIMA) [9] techniques, which are stochastic
process combining Auto-Regressive (AR) and Moving Average (MA) components. The
downside of these statistical models is that forecast accuracy decreases with increasing
independent variables such as for the PV power output, which is a function that depends
on various weather parameters. Moreover, the forecast of PV power generation has also
been classified [10–12] in time horizon depending on the needs of the PV production and
electrical transport management. The proposed time horizon is defined as follows:

• Very short-term forecast horizon: a few seconds to one hour; used for electricity
dispatch in real-time and energy smoothing.
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• Short-term forecast: for one or several hours up to the day ahead; guarantees system
commitment and scheduling.

• Medium-term forecast: multiple days to months ahead; ensures power system planning.
• Long-term forecast: months to one or several years; finds and assesses potentially

resourceful sites.

For this research paper, we used a robust statistical cointegration approach, the Jo-
hansen vector error correction model (VECM), to determine long-term equilibrium rela-
tionships. It is important to note that the Johansen approach for cointegration has been a
popular tool in applied economics but it has never been applied to PV systems for forecast-
ing. A unique feature of the resulting model is that it can be applied for the medium-term
horizon time PV power output prediction in an island zone. The measured dataset is
compared to the model one for different seasonal horizon times. The obtained results
prove the model’s efficacy and show promise for application in further studies aiming to
investigate short-term horizon times.

The rest of this paper is organized as follows: Section 2 contains a short historical
overview of the experimental conditions and methods used in our study. Section 3 presents
a brief introduction of the Johansen test. Section 4 presents the obtained results. Finally,
Section 5 provides our conclusions and presents ideas for future studies.

2. Research History
2.1. European Zone

Firstly, we studied a linear relation analysis of time series data collected from a PV
system from the GREEN lab in Metz, France [13]. The PV system is a grid-connected system
equipped with solar irradiance and temperature sensors. Therefore, the power output is
the dependent variable, while the solar irradiance and PV module temperature are the
explanatory variables. We performed time series, correlograms at level, Augmented Dickey–
Fuller (ADF) [14,15] stationarity tests, and residuals analysis such as the Goldfeld–Quandt
(GQ) and Durbin–Watson tests. When outliers were suspected, we applied the Engle–
Granger (EG) method [16,17] to determine the most appropriate model. The determined
power output EG cointegration relationship was then applied to other experimental years
for the Green lab in the European zone and compared to the measured power output data.

2.2. Island Zone

The EG model was applied to a PV system in the Reunion Island in the Indian Ocean,
and results were not very conclusive. Other weather parameters (such as wind, humidity,
dust) must be considered in such zones as they have an impact on the PV power output.
Spurious regression appeared. Consequently, we investigated whether the Johansen VECM
was a model that could be fitted to the zone, as more than two explanatory variables
should be considered. Indeed, the Johansen VECM cointegration test can be considered as
a multivariate generalization of the ADF test, enabling the estimation of all cointegrating
vectors when more than two variables are considered. The PV system in Reunion island is
equipped with solar irradiance, module temperature, and wind and humidity sensors, and
data is recorded at a sample time of 15 min. The Johansen VECM cointegration test has
already been applied to Reunion Island, as reported elsewhere [18]. Johansen cointegration
Trace and Eigen value tests, as well as lag criteria had been carried out to determine the
number of cointegration equations with the corresponding error correction coefficients.
The Wald test was applied to exclude short-term relationships, and white noise tests, such
as the Lagrange multiplier and Jarque–Bera test, were applied to ensure normal residual
distribution. The final cointegration relationship was then validated to determine long-term
horizon times [18].

The obtained resulting Johansen cointegration relationship was applied to a PV plant
in the island of Mauritius in the southwest Indian Ocean close to Reunion island. These
islands have similar weather conditions, and the year is divided in two main seasons:
summer and winter. The summer and the intermediate seasons run from November to
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April, while the winter and the intermediate seasons run from May to October. In this
paper, the used dataset for the island of Mauritius and the Johansen model spans over
a one-year period (in this case, from July 2019 to July 2020 and from October 2021 to
December 2022). The PV technology was silicon polycrystalline with a rated power of
320 Wp (north-facing orientation), and the PV total power was 20 kWp. The recorded data
was filtered so that data between 4:30 P.M. and 7:30 A.M. for the following day and missing
data were removed.

3. Johansen Procedure

If time series are nonstationary, it is not possible to use ordinary least square (OLS) to
estimate their long-run linear relationships because this would lead to spurious regression.
The technique of cointegration was introduced according to which models contained non-
stationary stochastic variables and can be constructed in a way that ensures that the results
are statistically meaningful. Therefore, the cointegration test and a vector error correction
model were established to distinguish between short-term and long-term equilibrium. The
Johansen procedure involves cointegrated variables that are directly constructed based on
maximum likelihood estimation instead of depending on OLS estimation. The Johansen
procedure [19,20] is simply a multivariate generalization of the ADF test and proposes two
different likelihood ratio tests: (a) Trace test, (b) maximum Eigen values test. The Trace
test is the null hypothesis tests of r cointegrating vectors against the alternative hypothesis
of n cointegrating vectors, whereas the maximum eigen-value test is the null hypothesis
tests of r cointegrating vectors against the alternative hypothesis of (r + 1) cointegrating
vectors. A more complete description of the Johansen procedure is given in [18]. Therefore,
the procedure required when conduction a Johansen test can be summarized as follows:

- Perform series stationarity tests to determine the existence of cointegration relation-
ships.

- If the previous step has been followed correctly, then the series are of the same order of
integration, and cointegration is likely; therefore, the VECM model can be estimated.
The lag length should be determined using Akaike and Schwarz’s criteria.

- The Johansen Trace and Eigen value tests should then be performed to determine the
number of cointegration relationships.

- Then, identify the long-term relationships or cointegration relationships between
variables.

- Subsequently, via the maximum likelihood method, the VECM model can be estimated,
and validation tests can be performed for residuals and white noise.

4. Results
4.1. Long-Horizon Term: Yearly

The methodology described in the previous section was applied to develop a long-
term prediction model for a grid-connected PV plant in Reunion island. Hence, the results
reported in this section are based on the Johansen model that was initially trained on
a dataset from 2013. The dataset consisted of a 15 by 15 min series of simultaneous
solar irradiance, wind speed, humidity, and PV system parameters (mainly power output
and module temperature) covering a whole year. The model had been trained [18] and
compared to a dataset from 2014 for validation regarding yearly horizon time.

The considered model was also applied to the island of Mauritius, where the experi-
mental data employed in this current analysis were obtained from a PV plant located on
the rooftop of the University of Mauritius. The experimental conditions were listed in
Section 2.2. Figure 1 illustrates a scatter plot of the measured power output, determined via
the Johansen model, on a yearly basis from July 2019 to July 2020 for each solar day hour
between 09:00 A.M. to 04:00 P.M. The very high linear regression value (96%), reveals that
the on-site measurement of PV power generation and the Johansen model are fundamental
in accurately predicting the PV power output at different horizon times. This is elaborated
in the following sections. Moreover, the model can be applied on a yearly basis for long-
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term horizon predicting, meaning that it can be used for unit commitment, load balancing
and scheduling, and for planning infrastructure.
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Figure 1. Validation of Johansen model for one dataset between July 2019 to July 2020 in the island of
Mauritius.

4.2. Long-Horizon Term: Monthly

In the literature, periods of a month to a year are considered as long horizon term.
These predicted horizons are suitable for long-term power generation and feed into power
grids while playing a role in determining seasonal trends. Therefore, taking into consid-
eration the weather conditions described in Section 2.2, we compared the on-site power
output measurements to the Johansen model for different months in different seasons. We
have chosen one particular month for each summer and winter season and two others
for the intermediate season for the years 2019 and 2020. In Figure 2, the left-hand side
plots represent the measured power output and the corresponding Johansen model for
the month of January 2020 in the summer season, July 2019 for the winter season, and the
months of April 2020 and October 2019 for the intermediate season. The high R2 values
of the linear regressions and the fact that most of these values are greater than 92% mean
that there is good agreement between the measured power and the Johansen model. The
right-hand side of Figure 2 are scatter plots representing the predicting power output.
Indeed, we are comparing the results for the same period on the left-hand side but for years
N + 1 or N + 2, as if we were predicting the same corresponding months.

The R2 values are greater than 90%, indicating that the Johansen model is positively
and strongly correlated with on-site measurements. For the island of Mauritius and in
agreement with the local energy supplier, this monthly long horizon term can be essential
for maintaining the solar schedule.

4.3. Medium-Horizon Term: Weekly

Although the prior results seem adequate, weather fluctuations spanning one or few
days may reduce predicting accuracy. Therefore, we decided to extend the study to shorter
periods, that is, weekly medium-horizon term. For this study, we selected random weeks
for each season and the intermediate seasons. The results are given in Figure 3. The left-
hand side are the scattered plots of random weeks for the weeks in 2020 or 2019. For the
summer season, the random week selected was 19 to 25 January 2020. For the intermediate
seasons, the selected weeks were 12 to 18 April 2020 and 10 to 17 September 2019. Finally,
for the winter season, the selected week was 10 to 17 August for 2019. The vertical axis is
the on-site measurements, and the horizontal axis is the Johansen model. The R2 values
of the linear regressions are greater than 95%, showing that the model is well adapted for
predictions. Therefore, we applied the model to the same periods but for the year of 2022,
as if we were led to make predictions for these similar weeks. The scattered plots on the
right-hand side of Figure 3 show the predicting results. The vertical axis is the Johansen
model, and the horizontal axis is the measured power output. Figure 3 shows that the R2
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values are more than 90%, again indicating a good correlation and proving suitable for this
horizon term.
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4.4. Medium-Horizon Term: Daily

This sub-section is concerned with a daily medium-horizon term, although in the
literature, the daily period is sometimes considered as short-horizon term. We performed
this last experiment by using a dataset consisting of daily 15 by 15 min data from on-site
measurements between 08:00 A.M. to 04:00 P.M. as indicated in Figure 4.
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5. Conclusions

Predicting PV information is crucial for fulfilling energy efficiency requirements,
electricity grid stability, and solar energy management. We focused on the use of a robust
statistical technique in the form of the Johansen VECM to predict PV generation in the
island zone of Mauritius. We proved the efficiency of the Johansen model for PV power
generation by comparing our experimental results to on-site measurements. Results are
not only in agreement with the aforementioned measurements but are also compliant with
respect to the time horizon conditions of grid stability and where PV energy management
as imposed by the local government. Indeed, we showed that the Johansen technique
is a powerful tool for monthly and daily PV medium horizon time prediction. Further
tests are in progress for the forecasting of very short-term horizon times, i.e., hourly to
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every 15 min. However, this method still needs to be improved by considering the climate
vagaries. Therefore, our future work will focus on incorporating artificial intelligence to
optimize the model.
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