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Abstract: The purpose of this paper is to identify econometric models likely to highlight the impact of
the COVID-19 pandemic on the financial markets. The Markov-switching “GARCH and EGARCH”
models are suitable for analyzing and forecasting the series of daily returns of the major global
stock indices (i.e., SSE, S&P500, FTSE100, DAX, CAC40, and NIKKEI225) during the pre-COVID-19
period, from 1 June to 30 November 2019, and the post-COVID-19 period, from 31 December 2019,
to 1 June 2020. The Markov-switching “GARCH and EGARCH” models allow good modeling of
the conditional variance. The estimated conditional variance values by these models highlight the
increase in volatility for the stock markets in our sample, during the post-COVID-19 period compared
to that pre-COVID-19, with a peak in volatility in “early January 2020” for the Chinese stock market
and in “March 2020” for the other five stock markets (i.e., New York, Paris, Frankfurt, London, and
Tokyo). The stock exchange of Frankfurt has shown great resilience compared to other international
stock exchanges (i.e., the stock exchanges in Paris, London, and New York). The modeling of the
impact of the COVID-19 pandemic on the financial markets by the Markov-switching “GARCH
and EGARCH” models makes it possible to simultaneously take into consideration the nonlinearity
at the level of the mean and the variance, and to obtain the results of the transition probabilities,
the unconditional probabilities and the conditional anticipated durations during the pre-COVID-19
period and the post-COVID-19 period.

Keywords: financial markets; Markov-switching GARCH models; COVID-19 pandemic; volatility

1. Introduction

The prices of the main international financial market portfolios experienced a plunge
in March 2020 due to the COVID-19 pandemic. Pandemics can also have a substantial
impact on financial systems due to their enormous economic costs [1]. It is true that the
previous literature remains limited as to how pandemics affect financial markets. However,
some research has advanced the impact of the COVID-19 pandemic on financial volatility [2–4].
It should be noted that other forms of natural disasters, such as earthquakes and volcanoes;
air disasters; as well as acts of terrorism, have a negative impact on financial markets [1,5–9].
Since the appearance of the first case of COVID-19 in Wuhan in December 2019, the virus
has quickly spread to all corners of the world. On 11 March 2020, when it has already
affected more than 100,000 people and killed thousands of people in over 100 countries, the
World Health Organization (WHO) declared the coronavirus epidemic (COVID-19) as a
global pandemic. The global spread of COVID-19, which has saturated healthcare systems,
has forced societies and economies to shut down, causing social and economic disruption.
The negative repercussions of the COVID-19 pandemic on foreign trade, tourism, transport,
and industry were evident [10]. Its economic consequences are likely to exceed those of the
global financial crisis of 2007–2009. In fact, in its April 2020 report, the International Mone-
tary Fund forecasts a global growth rate of−3% in 2020, which is lower than the lowest rate
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of −1.7% recorded in 2009 during the global financial crisis of 2007–2009 [11]. The negative,
substantial, and sudden impact of the COVID-19 pandemic on major stock markets was evi-
dent in March 2020 [1,10,12,13]. Indeed, the price of the S&P 500 stock index, which reached
a high value of 3386.15 points on 19 February 2020, experienced, after almost a month, a
decline of around 34% and recorded a low value of 2237.40 points on 23 March 2020. The
price of FTSE 100 also registered a decline of about 30% for a single month and fell from
7403.9 points on 16 February 2020 to 5190.8 points on 15 March 2020. Likewise, the price of
CAC 40 fell from 6111.24 points on 19 February 2020 to 3754.84 points on 18 March 2020, a
drop of around 39% for a single month. The literature explains financial volatility through
factors related to economic conditions, institutional problems, market uncertainty, good or
bad announcements, and economic policy uncertainty [10,14–23]. There is a fair amount of
research that has focused on estimating and forecasting the economic and financial costs of
pandemics [1]. For example, the study of the economic costs of the HIV pandemic [24], the
impact of the HIV pandemic on development [25], the costs of growing global obesity and
diabetes [26], the work on forecasting the economic costs for possible future pandemics
which has highlighted the importance of good health system management to address the
people affected and tackling outbreaks as well as the negative impact of social distancing
on economic activity [27], with the study indicating the need to prepare for pandemics and
estimating the value of the annual losses due to a possible pandemic at around 500 billion
US dollars, or 0.6% of global income [28]-currently considered to be underestimated [1]-the
work highlighting the need for economic risk management versus potential probability
future pandemics [29,30]. The objective of this paper is, therefore, to identify economet-
ric models likely to model the processes of the series of daily returns of the main world
stock market indices: SSE, S&P500, FTSE 100, DAX, CAC40, and NIKKEI 225, during the
pre-COVID-19 period, from 1 June to 30 November 2019, and the post-COVID-19 period,
from 31 December 2019 to 1 June 2020, in order to highlight the substantial impact of the
COVID-19 pandemic on the financial markets. Since these series experience phases of calm
or low volatility and phases of crisis or high volatility, the Markov-switching “GARCH and
EGARCH” models constitute the econometric methods adequate to model their volatility
during the period pre-COVID-19 and the post-COVID-19 one [31–36].

2. Results and Concluding Remarks

Both the graphical examination of our variables of interest and the unit root tests, i.e.,
the increased Dickey–Fuller, Phillips–Perron, and KPSS (Kwiatkovski, Phillips, Schmidt
and Shin), show that the daily prices of the main world stock indices: SSE, S&P500, FTSE
100, DAX, CAC40, NIKKEI 225 are not stationary, while the series of daily returns of
the same indices: RSSE, RS&P500, RFTSE 100, RDAX, RCAC40 and RNIKKEI 225, are
stationary, during the pre-COVID-19 period and the post-COVID-19 one.

Tables 1–4 below present the results of the estimation of the Markov-switching
“GARCH and EGARCH” models during the pre-COVID-19 and post-COVID-19 periods.

Given the results of the individual significance test of the coefficients, the information
criteria (i.e., Bayesian Information Criteria (BIC)), and the Log-likelihood (Log(L)), the
models suitable for modeling conditional volatility are, on the one hand, the Markov-
switching EGARCH model, with normal distribution, for the RS&P500, RSSE, RDAX,
RFTSE, and RNIKKEI series, the Markov-switching EGARCH model, with a generalized
distribution of errors, for the RCAC series, during the pre-COVID-19 period; and, on the
other hand, the Markov-switching EGARCH models, with normal distribution, for the
RS&P500, RCAC, RFTSE, and RNIKKEI series, the Markov-switching EGARCH model,
with a Student distribution, for the RDAX series, and the Markov-switching GARCH model,
with normal distribution, for the RSSE series, during the post-COVID-19 period. Figure 1
below illustrates the graphical representations of the conditional volatilities estimated by
the models indicated above, during the pre-COVID-19 period and the post-COVID-19 one,
for the six series of our interest: RS&P500, RSSE, RDAX, RCAC, RFTSE, and RNIKKEI.
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Table 1. Estimation of Markov-switching GARCH models during the pre-COVID-19 period from 1 June to 30 November 2019. h(i)t = α
(i)
0 + α

(i)
1 ε2

t−1 + β(i)ht−1.

Where ht−1 is the independent state of the past conditional variance; α
(i)
0 > 0, α

(i)
1 ≥ 0∧ β(i) ≥ 0, with i ε {1; 2}.

RS&P500 RSSE RDAX RCAC RFTSE RNIKKEI 225

MS-
nGARCH

(Normal Dis-
tribution)

MS-
sGARCH

(Student Dis-
tribution)

MS-
gedGARCH
(GED Dis-
tribution)

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

α
(1)
0

0.0397 0.0432 0.0413 0.0000 0.0142 0.0194 * 0.0594 * 0.0559 0.0583 0.0399 0.0300 0.0340 0.0219 0.1495 0.0196 0.2008 ** 0.2442 0.2685

α
(2)
0

0.2507 ** 0.2244 0.2421 * 0.0000 0.0003 0.0001 0.1674 ** 0.1194 0.1380 0.2722 * 0.1586 0.2093 0.0266 0.0001 0.0198 0.0000 *** 0.0001 0.0001

α
(1)
1

0.0397 0.0432 0.0413 0.0004 0.0142 * 0.0194 0.0594 0.0559 0.0583 0.0399 * 0.0300 0.0340 2.3633 1.1209 3.4992 0.2008 *** 0.2442 0.2686

α
(2)
1

0.2507 * 0.2244 * 0.2421 0.0367 0.0003 0.0001 0.1674 * 0.11943 0.1380 0.2722 ** 0.1586 0.2093 0.0009 0.0032 0.0013 0.0000 *** 0.0001 0.0001

β
(1)
1

0.6836 *** 0.6959 *** 0.6860 *** 0.9999 *** 0.9800 *** 0.9724 *** 0.7545 *** 0.8025 *** 0.7770 *** 0.7090 *** 0.8119 *** 0.7623 *** 0.8962 *** 0.4959 0.9139 *** 0.6985 *** 0.6582 *** 0.5945 **

β
(2)
1

0.6837 *** 0.8787 *** 0.6860 *** 0.9632 *** 0.9800 *** 0.9724 *** 0.7545 *** 0.8025 *** 0.7770 *** 0.7090 *** 0.8119 *** 0.7624 *** 0.0229 0.1810 0.0920 0.6985 *** 0.6582 *** 0.5945 *

υ(1) 8.4613 * 1.5233 * 6.7499 ** 1.4285 *** 4.8566 1.3430 ** 3.9446 ** 1.1658 99.7120 *** 3.7656 *** 4.6154 *** 1.3526 ***

υ(2) 8.4615 * 1.5233 * 6.7499 *** 1.4285 *** 4.8564 * 1.3430 *** 3.9447 1.1659 * 6.9040 19.9959 *** 4.6154 ** 1.3525 ***

P11 0.9708 *** 0.9204 *** 0.9708 *** 0.4511 *** 0.0000 0.5745 *** 0.9635 *** 0.9135 *** 0.9135 *** 0.9174 *** 0.9481 *** 0.9174 *** 0.9675 *** 0.9687 *** 0.9623 *** 0.5000 *** 0.5936 *** 0.5000 **

P21 0.0796 *** 0.0292 0.0796 ** 1.0000 0.4255 *** 1.0000 *** 0.0865 *** 0.0365 0.0365 0.0519 ** 0.0826 0.0519 0.3088 ** 0.1067 *** 0.6949 *** 0.4064 *** 0.5000 *** 0.4064 *

Log(L) −133.3526 −131.4676 −131.982 −145.6943 −149.1706 −149.2006 −153.8733 −149.0492 −150.3224 −151.7521 −142.9516 −144.7371 −131.3101 −132.3429 −128.8778 −147.0999 −144.4282 −144.4264

BIC 305.3954 311.2981 312.3268 329.8209 346.3814 346.4414 346.5001 346.5403 349.0866 342.3827 334.5014 338.0724 301.4365 313.2061 306.276 332.632 336.8965 336.893

*: indicates the significance of the coefficient at the statistical threshold of 10%; **: indicates the significance of the coefficient at the statistical threshold of 5%; and ***: indicates the
significance of the coefficient at the statistical threshold of 1%.

Table 2. Estimation of Markov-switching GARCH models during the post-COVID-19 period from 31 December 2019 to 1 June 2020. h(i)t = α
(i)
0 + α

(i)
1 ε2

t−1 + β(i)ht−1.

Where ht−1 is the independent state of the past conditional variance; α
(i)
0 > 0, α

(i)
1 ≥ 0∧ β(i) ≥ 0, with i ε{1; 2}.

RS&P500 RSSE RDAX RCAC RFTSE RNIKKEI 225

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

α
(1)
0

0.1409 0.0878 0.1153 1.0390 ** 0.0252 1.6457 0.2328 ** 0.0282 0.1110 0.1191 * 0.0000 0.3499 0.1872 0.0000 0.5019 0.2429 0.2229 4.2051

α
(2)
0

0.2992 * 0.2813 0.2932 0.9999 *** 0.0708 0.9999 *** 0.1970 ** 0.1047 0.1470 0.5735 * 0.1619 0.2245 0.2845 0.1756 0.2298 0.1816 ** 0.1743 0.9998 ***

α
(1)
1

0.1409 0.0878 0.1153 1.0390 * 0.0252 ** 1.6460 ** 0.2329 0.0282 0.1110 1.1660 * 0.0000 0.3499 0.1874 * 0.0000 0.5019 0.2429 0.2229 4.2051

α
(2)
1

0.2992 ** 0.2813 * 0.2932 0.9999 *** 0.0708 0.9999 *** 0.1970 0.1048 0.1470 0.1796 0.1619 0.2245 0.2852 ** 0.1757 0.2298 * 0.1816 0.1743 0.9998 ***

β
(1)
1

0.6498 *** 0.6764 *** 0.6601 *** 0.0000 *** 0.9143 *** 0.0000 0.7566 *** 0.8787 *** 0.8172 *** 0.3134 *** 0.8380 *** 0.7214 *** 0.6637 *** 0.8242 *** 0.7074 *** 0.7526 *** 0.7641 *** 0.0001

β
(2)
1

0.6498 *** 0.6764 *** 0.6601 *** 0.0000 *** 0.9143 *** 0.0000 0.7566 *** 0.8787 *** 0.8172 *** 0.7291 *** 0.8380 *** 0.7215 *** 0.6631 *** 0.8242 *** 0.7074 *** 0.7526 *** 0.7641 *** 0.0001

υ(1) 11.1271 ** 1.6108 *** 3.2933 ** 0.7000 *** 4.5435 *** 1.0829 4.8549 *** 0.7000 *** 6.6031 *** 0.7000 *** 11.3866 0.7000 ***
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Table 2. Cont.

RS&P500 RSSE RDAX RCAC RFTSE RNIKKEI 225

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

MS-
nGARCH

MS-
sGARCH

MS-
gedGARCH

υ(2) 11.1273 ** 1.6108 *** 3.2936 0.7000 *** 4.5434 1.0829 *** 4.8545 0.7000 *** 6.5993 0.7000 *** 11.3867 0.7000 ***

P11 0.9747 *** 0.9747 *** 0.9820 *** 0.9624 *** 0.9624 *** 0.9013 0.9992 *** 0.9992 *** 0.9715 *** 0.9834 *** 0.9996 0.9996 *** 0.9724 *** 0.9996 0.9724 *** 0.9813 *** 0.9596 *** 0.9596

P21 0.0180 ** 0.0180 0.0253 *** 0.0987 *** 0.0987 *** 0.0376 0.0285 *** 0.0285 *** 0.0008 0.0120 0.0276 0.0276 *** 0.0004 0.0276 0.0004 0.0404 *** 0.0187 0.0187

Log(L) −216.1008 −214.935 −215.2672 −164.8534 −156.4963 −161.0797 −233.2177 −224.3603 −225.0192 −218.9026 −218.1442 −227.0016 −215.6416 −210.3256 −220.6903 −199.1081 −198.6219 −206.969

BIC 469.2794 476.2174 476.8816 366.3045 358.7397 367.9064 503.5132 495.068 496.3858 474.9604 482.7323 500.4472 468.3611 466.9985 487.7279 434.8139 442.991 459.6852

*: indicates the significance of the coefficient at the statistical threshold of 10%; **: indicates the significance of the coefficient at the statistical threshold of 5%; and ***: indicates the
significance of the coefficient at the statistical threshold of 1%.

Table 3. Estimation of Markov-switching EGARCH models during the pre-COVID-19 period from 1 June to 30 November 2019. log
(

h(i)t

)
= α

(i)
0 + α

(i)
1

∣∣∣ εt−1
ht−1

∣∣∣+
α
(i)
2

εt−1
ht−1

+ β(i)log(ht−1). Where i ε {1, 2} and ht−1 is the independent state of the past conditional variance.

RS&P500 RSSE RDAX RCAC RFTSE RNIKKEI 225

MS-
nEGARCH

MS-
sEGARCH

MS-
gedEGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

α
(1)
0

−0.0311 −0.0334 −0.0326 −0.1773 −0.1448 −0.1549 −0.0116
***

−0.0023
*** −0.0093 −0.0153

*** −0.0022 −0.0114
***

−1.1020
***

−0.0620
***

−0.0654
***

−0.1106
***

−0.0637
***

−0.0813
***

α
(2)
0

−0.0311 −0.0334 −0.0325 −0.1773 −0.1448 −0.1549
***

−0.0115
***

−0.0023
*** −0.0085 −0.0153

*** −0.0022 −0.0114
*** −0.2666 ** −0.0606

***
−0.0737

***
−0.1101

***
−0.0637

***
−0.0813

***

α
(1)
1

0.2485 *** 0.2491 *** 0.2502 *** −0.3709
*** −0.3586 ** −0.3712 * −0.2009

***
−0.2288

***
−0.1436

***
−0.2602

***
−0.2275

***
−0.2284

*** 0.4673 *** −0.3216
***

−0.3363
***

−0.5506
***

−0.5615
***

−0.4395
***

α
(2)
1

0.2485 *** 0.2491 *** 0.2502 *** −0.3709
*** −0.3586 * −0.3712 ** −0.2009

***
−0.2288

***
−0.1438

***
−0.2602

***
−0.2275

***
−0.2284

***
−1.4492

***
−0.2780

***
−0.3501

***
−0.5509

***
−0.5615

***
−0.4395

***

α
(1)
2

−0.3162 *** −0.3259 *** −0.3204
*** −0.1616** −0.1374 −0.1467 −0.2628

***
−0.2543

***
−0.2025

***
−0.3680

***
−0.4195

***
−0.3489

*** 0.3644 *** −0.2453
***

−0.2596
***

−0.1819
***

−0.2344
***

−0.1823
***

α
(2)
2

−0.3162 *** −0.3259 *** −0.3204
*** −0.1616** −0.1374 −0.1467 −0.2628

***
−0.2543

***
−0.2026

***
−0.3680

***
−0.4195

***
−0.3489

***
−1.2816

***
−0.2606

***
−0.3138

***
−0.1820

***
−0.2344

***
−0.1823

***

β
(1)
1

0.9138 *** 0.9103 *** 0.9123 *** 0.5603 *** 0.6049 *** 0.5893 *** 0.9427 *** 0.9491 *** 0.9504 *** 0.9345 *** 0.9268 *** 0.9336 *** 0.0895 * 0.9088 *** 0.9071 *** 0.7769 *** 0.8058 *** 0.8172 ***

β
(2)
1

0.9138 *** 0.9103 *** 0.9123 *** 0.5603 *** 0.6049 *** 0.5893 *** 0.9427 *** 0.9491 *** 0.9504 *** 0.9345 *** 0.9268 *** 0.9336 *** 0.3108 *** 0.9079 *** 0.8950 *** 0.7769 *** 0.8058 *** 0.8172 ***

υ(1) 24.3579 *** 1.8826 *** 7.4575 *** 1.4773 *** 4.8542 *** 0.9504 *** 4.3069 *** 1.5106 *** 6.3084 *** 1.4212 *** 5.6409 *** 1.7891 ***

υ(2) 24.3579 *** 1.8826 *** 7.4575 *** 1.4773 *** 4.8542 *** 0.9504 *** 4.3069 *** 1.5106 *** 6.3110 *** 1.3899 *** 5.6409 *** 1.7891 ***

P11 0.9708 *** 0.9708 *** 0.9708 *** 0.5745 *** 0.5745 *** 0.0000 0.9635 *** 0.9635 *** 0.9135 *** 0.9481 *** 0.9174 *** 0.9481 *** 0.9148 *** 0.5002 *** 0.5014 *** 0.5000 *** 0.5936 *** 0.5000 ***

P21 0.0796 *** 0.0796 *** 0.0796 *** 1.0000 *** 1.0000 *** 0.4255 *** 0.0865 *** 0.0865 *** 0.0365 *** 0.0826 *** 0.0519 *** 0.0826 *** 0.3550 *** 0.5002 *** 0.5009 *** 0.4064 *** 0.5000 *** 0.4064 ***

Log(L) −123.5262 −123.4272 −123.476 −148.5441 −146.9717 −147.1036 −140.0383 −139.6108 −140.959 −138.0418 −133.0186 −132.0914 −126.9224 −128.758 −128.2535 −131.8982 −132.0324 −132.3902

BIC 295.4153 304.8897 304.9874 345.1284 351.5917 351.8555 328.5185 337.3519 340.0481 324.6817 324.3549 322.5006 302.365 315.7403 314.7314 311.8367 321.7131 322.4287

*: indicates the significance of the coefficient at the statistical threshold of 10%; **: indicates the significance of the coefficient at the statistical threshold of 5%; and ***: indicates the
significance of the coefficient at the statistical threshold of 1%.
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Table 4. Estimate of EGARCH regime change models during the post-COVID-19 period from 31 December 2019 to 1 June 2020. log
(

h(i)t

)
= α

(i)
0 + α

(i)
1

∣∣∣ εt−1
ht−1

∣∣∣+
α
(i)
2

εt−1
ht−1

+ β(i)log(ht−1). Where i ε {1, 2} and ht−1 is the independent state of the past conditional variance.

RS&P500 RSSE RDAX RCAC RFTSE RNIKKEI 225

MS-
nEGARCH

MS-
sEGARCH

MS-
gedEGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

MS-
nEGARCH

MS-
sEGARCH

MS-ged-
EGARCH

α
(1)
0

−0.0158
*** −0.0118 * −0.0151

*** 0.0257 0.0385 0.0261 −0.0006 −0.0008 −0.0001 −0.0167
*** −0.0139 −0.0101

***
−0.0134

***
−0.0117

***
−0.0099

*** 0.0149 *** 0.0082 *** 0.0141 ***

α
(2)
0

−0.0157
*** −0.0116 * −0.0151

*** 0.0258 0.0385 0.0261 −0.0006 −0.0008 −0.0001 −0.0167
*** −0.0139 −0.0101

***
−0.0134

***
−0.0117

***
−0.0099

*** 0.0151 *** 0.0084 *** 0.0142 ***

α
(1)
1

−0.4035
*** −0.3505 * −0.3677

*** 0.0542 0.0405 0.0464 −0.1609
***

−0.1560
***

−0.1461
***

−0.2236
***

−0.2022
***

−0.2031
***

−0.1686
***

−0.1764
***

−0.2013
***

−0.1915
***

−0.1706
***

−0.2003
***

α
(2)
1

−0.4035
*** −0.3505 ** −0.3677

*** 0.0542 0.0405 0.0464 −0.1609
***

−0.1560
***

−0.1461
***

−0.2236
*** −0.2022** −0.2031

***
−0.1686

***
−0.1764

***
−0.2013

***
−0.1915

***
−0.1707

***
−0.2003

***

α
(1)
2

−0.7525
***

−0.6938
***

−0.7034
***

−0.7902
*** −0.6965 ** −0.7399 ** −0.2850

***
−0.2914

***
−0.2875

***
−0.3796

***
−0.3974

***
−0.3351

*** −0.316 *** −0.3271
***

−0.3036
***

−0.2588
***

−0.2667
***

−0.2965
***

α
(2)
2

−0.7521
***

−0.6932
***

−0.7034
***

−0.7902
*** −0.6965 −0.7399 −0.2850

*** −0.2914 −0.2875
***

−0.3796
***

−0.3974
***

−0.3351
*** −0.316 *** −0.3271

***
−0.3036

***
−0.2587

***
−0.2665

***
−0.2965

***

β
(1)
1

0.9561 *** 0.9609 *** 0.9597 *** 0.7145 *** 0.7429 *** 0.7251 *** 0.9801 *** 0.9858 *** 0.9839 *** 0.9761 *** 0.9778 *** 0.9810 *** 0.9825 *** 0.9841 *** 0.9868 *** 0.9699 *** 0.9778 *** 0.9679 ***

β
(2)
1

0.9561 *** 0.9609 *** 0.9597 *** 0.7145 *** 0.7429 *** 0.7251 *** 0.9801 *** 0.9858 *** 0.9839 *** 0.9761 *** 0.9778 *** 0.9810 *** 0.9825 *** 0.9841 *** 0.9868 *** 0.9699 *** 0.9778 *** 0.9679 ***

υ(1) 55.0694 *** 2.3187 *** 5.3726 *** 1.3823 *** 5.1847 *** 1.3514 *** 6.2915 *** 1.5078 *** 7.0457 *** 1.5115 *** 29.1137 *** 1.9323 ***

υ(2) 55.0694 *** 2.3187 *** 5.3726 *** 1.3823 *** 5.1847 *** 1.3514 *** 6.2915 *** 1.5078 *** 7.0457 *** 1.5115 *** 29.1137 *** 1.9323 ***

P11 0.9747 *** 0.9747 *** 0.9820 *** 0.9624 *** 0.9624 *** 0.9624 *** 0.9715 *** 0.9992 *** 0.9715 *** 0.9724 *** 0.9724 *** 0.9724 *** 0.9724 *** 00.9724 *** 0.9724 *** 0.9813 *** 0.9596 *** 0.9596 ***

P21 0.0180 *** 0.0180 *** 0.0253 *** 0.0987 *** 0.0987 *** 0.0987 *** 0.0008 *** 0.0285 *** 0.0008 *** 0.0004 *** 0.0004 0.0004 *** 0.0004 *** 0.0004 *** 0.0004 *** 0.0404 *** 0.0187 *** 0.0187 ***

Log(L) −201.2783 −201.4655 −201.0586 −151.7309 −150.2307 −150.0951 −216.7804 −214.6281 −215.3432 −209.9184 −209.109 −209.8444 −202.4837 −201.7522 −201.9135 −188.9213 −188.9126 −188.6964

BIC 448.9038 458.5478 457.734 349.2089 355.3579 355.0866 479.9082 484.8729 486.3032 466.2807 473.9507 475.4216 451.3147 459.1211 459.4438 423.5896 432.7216 432.2894

*: indicates the significance of the coefficient at the statistical threshold of 10%; **: indicates the significance of the coefficient at the statistical threshold of 5%; and ***: indicates the
significance of the coefficient at the statistical threshold of 1%.
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Figure 1. Conditional volatility during the pre-COVID-19 and post-COVID-19 period. (A) Pre-
COVID-19 period from 1 June to 30 November 2019. (B) Post-COVID-19 period from 31 December
2019 to 1 June 2020.

From this figure, we see that the extent (maximum-minimum) is very large during
the post-COVID-19 period compared to the pre-COVID-19 period. Apart from the stock
market of the epicenter country of the COVID-19 pandemic (the Chinese stock market), for
which conditional volatility (denoted “volsse”) reached its peak in “late December-early
January” during the post-COVID-19 period, volatilities conditions of the other five stock
markets (the New York, Paris, Frankfurt, London, and Tokyo stock exchanges) reached
their climax in March 2020. This finding clearly illustrates the increase in volatility in the
main stock markets due to the pandemic of COVID-19.

The indicators of central tendency and position (the first quartile, the median, the third
quartile, the arithmetic mean), the minimum value, the maximum value, and the dispersion
indicators (the standard deviation, the coefficient of variation, and the interquartile range)
of conditional volatility (Tables 5 and 6) increased during the post-COVID-19 period
compared to the pre-COVID-19 period. This increase clearly illustrates the increase in
volatility in major stock markets due to the COVID-19 pandemic.
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Table 5. Statistical indicators of conditional volatility during the pre-COVID-19 period.

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev. Interquartile
Coefficient

S&P 5.134 7.262 9.663 11.77 14.275 33.858 6.263305 0.725758046

SSE 6.156 12.171 13.616 13.218 14.766 16.375 2.089393 0.190584606

DAX 3.962 8.628 12.042 12.961 17.328 25.193 5.18288 0.72247135

CAC 3.682 9.25 12.389 13.273 16.346 29.703 5.59991 0.572766164

FTSE 5.849 10.977 11.667 11.963 12.457 21.238 2.40386 0.126853518

NIKKEI 2.672 8.664 11.171 11.195 14.086 18.974 3.578993 0.485363889

Table 6. Statistical indicators of conditional volatility during the post-COVID-19 period.

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev. Interquartile
Coefficient

S&P 4.89529 13.23112 27.1176 42.77574 62.66145 172.00951 39.30484 1.822813597

SSE 16.12 16.9 19.17 40.42 26.43 1569 157.4888 0.497130934

DAX 13.31 19.29 37.62 40.35 52.3 103.76 23.27155 0.877458799

CAC 7.773 17.917 34.91 38.874 49.572 114.521 25.16885 0.906760241

FTSE 8.316 17.32 31.563 34.389 45.535 90.947 20.76365 0.893926433

NIKKEI 10.06 21.05 27.23 32.47 39.47 85 17.08098 0.676459787

According to the values of the transition probability P21, we see that the chances of
passing from the state of crisis at t-1 to the state of stability at t have greatly decreased,
during the post-COVID-19 period compared to that pre-COVID-19, for all stock markets in
our sample (Tables 7 and 8). For example, this probability goes, between the pre-COVID-19
and post-COVID-19 period, from 0.355 to 0.0004 for the stock exchange of London, from
0.4064 to 0.0404 for the stock exchange of Tokyo, and from 0.0826 to 0.0004 for the stock
exchange of Paris. It should be noted that the stock exchange of Frankfurt recorded the
smallest decrease in this probability between the pre-COVID-19 and the post-COVID-19
period, a drop from 0.0865 to 0.0285. Based on the values of the unconditional probability
in the stable state π1 and the unconditional probability in the crisis state π2, we see that
the COVID-19 pandemic has had a negative impact on the stock exchanges of New York,
Paris, and London. In other words, the proportion of observations that should be in a
state of crisis (π2) increased significantly, during the post-COVID-19 period compared
to the pre-COVID-19 period, for these three stock exchanges. Between the pre-COVID-
19 and post-COVID-19 period, this proportion rose from 19.35% to 98.57% for the stock
exchange of London, from 38.59% to 98.57% for the stock exchange of Paris, and from
26.84% to 58.43% for the stock exchange of New York. In return, the stock exchange of
Frankfurt showed great resilience, compared to other international stock exchanges, with
the recording of a very low value of the unconditional probability of the state of crisis π2
and a very high value of the unconditional probability of the state of stability π1, during
the post-COVID-19 period compared to the pre-COVID-19 period. In fact, the proportion
of observations that should be in the state of crisis increased from 38.59%, during the
pre-COVID-19 period, to 2.73%, during the post-COVID-19 period, for this stock exchange.
It should also be noted that, to a lesser extent, the stock exchange of Tokyo has also shown
a certain resilience, with a decrease in the proportion of observations that should be in the
state of crisis during the post-COVID-19 period compared to the pre-COVID-19, or 31.64%
against 55.16%. These latest results are supported by the variations in the values of the
expected duration conditional on the state of crisis and the expected duration conditional
on the state of stability, namely: the significant increase in the expected period of high
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volatility (1/1− P22) during the post-COVID-19 period compared to that pre-COVID-19
for the stock exchanges of Paris, London, and New York, as well as the significant increase
in the expected period of low volatility (1/1 − P11) during the post-COVID-19 period
compared to that pre-COVID-19 for the stock exchange of Frankfurt. On the one hand,
we can expect a period of high volatility equal to 2500 days, or 1.6 years, during the post-
COVID-19 period against a period of high volatility equal, respectively, to almost 12 days
and 3 days during the pre-COVID-19 period for stock exchanges in Paris and London. On
the other hand, we can expect a period of high volatility equal to only 35 days during the
post-COVID-19 period against a period of high volatility equal to almost 11 days during
the pre-COVID-19 period for the stock exchange of Frankfurt. The resilience of this stock
exchange in relation to the COVID-19 pandemic is illustrated by the expected period of
low volatility equal to 1250 days, or 0.8 years, during the post-COVID-19 period, against
an expected period of low volatility equal to 27 days, during the pre-COVID-19 period,
for the German stock market.

Table 7. Transition probabilities, unconditional probabilities, and conditional anticipated duration
(the pre-COVID-19 period).

Transition Probabilities, Unconditional
Probabilities and Conditional

Anticipated Duration
RS&P500 RSSE RDAX RCAC RFTSE RNIKKEI225

P11 0.9708 0.5745 0.9635 0.9481 0.9148 0.5

P22 = 1− P21 0.9204 0 0.9135 0.9174 0.645 0.5936

P12 = 1− P11 0.0292 0.4255 0.0365 0.0519 0.0852 0.5

P21 0.0796 1 0.0865 0.0826 0.355 0.4064

π1 = 1−P22
2−P22−P11

0.7316 0.7015 0.7033 0.6141 0,8065 0.4484

π2 = 1−P11
2−P22−P11

0.2684 0.2985 0.2967 0.3859 0.1935 0.5516

Conditional anticipated duration on the
state of crisis = 1/1− P22

12.5628 1.0000 11.5607 12.1065 2.8169 2.4606

Conditional anticipated duration on the
state of stability = 1/1− P11

34.2466 2.3502 27.3973 19.2678 11.7371 2.0000

Table 8. Transition probabilities, unconditional probabilities, and conditional anticipated duration
(the post-COVID-19 period).

Transition probabilities, Unconditional
Probabilities, and Conditional

Anticipated Duration
RS&P500 RSSE RDAX RCAC RFTSE RNIKKEI225

P11 0.9747 0.9624 0.9992 0.9724 0.9724 0.9813

P22 = 1− P21 0.982 0.9013 0.9715 0.9996 0.9996 0.9596

P12 = 1− P11 0.0253 0.0376 0.0008 0.0276 0.0276 0.0187

P21 0.018 0.0987 0.0285 0.0004 0.0004 0.0404

π1 = 1−P22
2−P22−P11

0.4157 0.7241 0.9727 0.0143 0.0143 0.6836

π2 = 1−P11
2−P22−P11

0.5843 0.2759 0.0273 0.9857 0.9857 0.3164

Conditional anticipated duration on the
state of crisis = 1/1− P22

55.5556 10.1317 35.0877 2500.0000 2500.0000 24.7525

Conditional anticipated duration on the
state of stability = 1/1− P11

39.5257 26.5957 1250.0000 36.2319 36.2319 53.4759
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