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Abstract: Unexpected responses in dynamic systems can lead to catastrophic failures. Without full
knowledge of the system, it is impossible to know whether all of the dynamics have been captured
or considered. Furthermore, a large number of Monte Carlo simulations may be time-prohibitive
when looking at extreme behavior. In this paper, the Matched Upcrossing Equivalent Linear System
(MUELS) linearization method is applied to a series of Duffing oscillators of varying stationarities,
characterized by brief excursions into domains of much larger oscillation, to test the non-linear limits
of the MUELS method and the ability of the MUELS method to uncover rare dynamics. The MUELS
method is a linearization scheme that searches for linear systems that have the same zero-upcrossing
rate as the non-linear system of interest. These systems are then input into the Design Loads Generator
(DLG) to produce an ensemble of input time series that lead to extreme linear realizations, which are
then used as input into the non-linear system of interest. The MUELS method results were compared
to Monte Carlo simulations in various ways including probability density functions, time series,
and computational expense. It was found that the MUELS method recovers extreme behavior with
relative success, seeing more accurate results for more stationary systems. The current work suggests
that improvements to return period estimation and equivalent linear system parameter fidelity could
produce even more accurate results.

Keywords: extreme events; non-stationary; stochastic processes; Duffing oscillator

1. Introduction

Often times in an ocean environment, the extreme responses of ships and other struc-
tures can be different than expected. Running simulations and tests does not always reveal
the behavior that appears in these scenarios. Engineers designing systems that contain
unknown dynamical properties, such as a domain of attraction, orders of magnitude larger
than the ordinary motion would benefit from a method that could identify the presence
of these very dynamics. Specifically, this paper will focus on predicting rare behavior of
stochastically forced non-stationary systems containing multiple attractors.

The current landscape of extreme value prediction techniques is vast but not particu-
larly suited to this problem. Generally, extreme value theory [1] is a solid foundation to
start rare event analysis. Strictly speaking, the extreme characteristics of ocean processes
cannot be viewed as time series using extreme value theory due to dependence between
peaks. As such, [2] discusses extreme value theory as related to stochastic processes tak-
ing into account dependence between peaks and changes in parameters over time. The
aforementioned paper focuses mainly on stationary processes, so while it provides a good
starting point, the derivations made and theories stated are not directly applicable to
non-stationary processes.
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Extreme value theory is applied to both Gaussian and non-Gaussian dynamic systems
in [3] to calculate reliability. Both generalized Pareto via peaks-over-threshold and general-
ized extreme value distributions were fit to small sets of data to estimate the probability of
failure. In general, the two distribution types seemed to extrapolate Monte Carlo results
with some levels of pre-processing involved within reason. That being said, the method
relies heavily on the samples used and could break down if there are unknown dynamics or
the process tends to non-stationarity. The shortcomings of the generalized Pareto via peaks-
over-threshold are discussed in more detail in [4] using a marine dynamics viewpoint.

A further investigation of rare events of non-linear systems was performed in [5]. The
extreme characteristics of a piecewise linear oscillator was studied by investigating the
tail of the response under various circumstances. The behavior of the tail was found to be
dependent on various factors but was more or less defined under the set of circumstances
examined in this paper. While [5] provides an excellent derivation and study; it is limited in
that the solution is specific to the model and the results are not necessarily usable outside
of a piecewise linear oscillator.

Another direction that can be taken is through linearization. The basic idea of lin-
earization is to find a linear surrogate for a non-linear process, generally with the same root
mean square, so that linear analysis can be used. In [6], multiple non-linear systems were
linearized using a novel approach involving harmonic averaging and statistical lineariza-
tion for a system that is both deterministically and stochastically forced. The authors were
able to recover the magnitude of the response spectra and the average mean square value
quite well. However, insights into the transfer function phase relationships and time series
comparisons would be helpful for any extreme value analysis. This paper provides a solid
resource for linearization, but it would be of academic and design interest to compare time
series of the responses as well as extreme characteristics.

Another well-used method for non-linear extreme characteristic study is the First
Order Reliability Method (FORM). The basic idea of FORM is to find the most probable
realization of an input that results in the response level of interest. In [7], FORM was used
to predict statistical features of parametric roll (parametric roll is a phenomenon that occurs
when a ship is (generally) perpendicular to a wave train and the relationship between
wavelength and the length of a vessel reaches a certain point, resulting in extremely large
rolling motions). FORM was able to capture the rarity levels of extreme roll motions as
compared to Monte Carlo simulations rather well, especially when taking into account the
multiple sets of most probable input realizations that lead to the response level of interest
and after implementing different optimization algorithms. With FORM and in [7], the
response level needs to be indicated. In situations where the response levels are unknown,
FORM would not be able to efficiently flesh out the dynamics of the system.

One of the major building blocks for the method that will be used in this paper is the
Design Loads Generator (DLG). The DLG is a tool that provides extreme realizations of
linear systems using modified phase distribution and the asymptotic nature of extreme
value theory [8]. To produce these extreme realizations, an input spectrum, transfer function,
and return period of interest are input into the DLG. The DLG uses a metric for the return
period called the Target Extreme Value (TEV) [9], which can be described by Equation (1).

TEV = /2In(n) £

SHEE

M

where 7 is the number of cycles in the return period, £ is the most probable maximum
response for the return period, and ¢ is the standard deviation of the response. Note that
the equivalence between the two terms only applies if the process is Gaussian. While the
DLG is generally applied to cases of Gaussian forcing and responses, it can also be used to
produce realizations of extrema in a surrogate process. Not only does the DLG provide
extreme realizations of the surrogate process but also the input that leads to those extremes.
These inputs are valid realizations of the input spectrum and can be used to evaluate the
response of a non-linear system that is related to the surrogate process used. As such,
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the inputs can also be run through other degrees of freedom or responses to investigate
the behavior of a system as a whole while a single degree of freedom is experiencing an
extreme. The surrogate process strategy with the DLG was used in [10] to investigate the
probability of failure for a stiffened ship panel under both slamming pressures and bending
stresses. Using different panel configurations, the estimation of the probability of failure
using the DLG compared to Monte Carlo simulations was in the same order of magnitude
for each panel while taking less than 0.4% of the time. While this implementation of the
DLG has been shown to produce encouraging results, it still requires knowledge of the
physics behind a system. Systems with unknown dynamics, like some non-stationary
systems, could not be investigated with this method as presented without knowledge of a
surrogate that could represent the system of interest.

Investigating non-stationary extremes is very important to ensure the safety and proper
design of any structure. That being said, without the knowledge that the system can exhibit
this type of behavior due to limited data or modeling simplifications, the design problem
becomes immensely difficult. Furthermore, any time series analysis regarding the response
of interest or other degrees of freedom during an extreme event remains a challenge for
most of the methods mentioned above. In this paper, the Matched Upcrossing Equivalent
Linear System (MUELS) [11] method was used to identify rare, unknown behaviors of
non-stationary systems and to produce an ensemble of extreme realizations. The MUELS
method was further developed and tested in this paper by comparing extreme probability
density functions and time domain results with Monte Carlo simulations. An experiment
gauging the applicability of the TEV was also performed to improve the accuracy of the
MUELS method results.

2. Methodology

In this section, the problem is set up and the Duffing oscillator is described. Then, a
relative stationarity test is defined for the sake of comparison between each of the three
systems used in this paper. An overview of the MUELS method follows along with the
Monte Carlo simulation setup.

2.1. Problem Statement

To demonstrate the capability of the MUELS method to identify extreme characteristics
in non-stationary systems, Duffing oscillators with fixed system parameters excited by
a sea spectrum and variable forcing factor were used. The Duffing oscillator can be
representative of the roll motion in ships due to the cubic stiffness term representing the
non-linear restoring force. Identifying extreme characteristics of roll motions is of utmost
importance due to potential capsize or damage to crew, machinery, and cargo. The equation
of motion for the Duffing oscillator is as follows:

% +dx+ax + Bx® = Foy(t) )

where x is displacement, ¥ is the velocity, ¥ is the acceleration, d is the linear damping, a is
the linear stiffness, B is the cubic stiffness, F; is the forcing factor, and 7(t) is a stochastic
time series drawn from an ocean-wave spectrum. For a given system, the forcing factor
is the primary driver in setting the level of stationarity. In this paper, a Bretschneider
spectrum [12] was used with a significant wave height of 3.0 and a modal period of 2.1 s.
Thus, the Duffing oscillator is a practical and relevant model to investigate stochastic
bifurcations [13]. These bifurcations generate statistics that change with time, resulting
in non-stationary processes. In this paper, these bifurcations are used as a measure of
stationarity and a characteristic that may or may not be known about the system.

2.2. Stationarity Tests

In this application, the weak-sense definition of stationarity is the primary focus. A
weak-sense stationary process essentially has a mean that is constant in time, i.e., no trends,
and a variance that does not change with time. The non-stationary systems investigated
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in this paper bifurcated into two distinct domains of attraction with differing root mean
square (RMS) values. As such, the stationarity tests were performed by calculating a
moving RMS of each time series. By calculating the moving RMS, any excursions into the
other domain of attraction were detected by counting the number of threshold upcrossings
of the moving RMS. The moving RMS is a system function in MATLAB that calculates the
RMS of overlapping, variable-length windows centered around a given point. Since all of
the processes in this paper are zero-mean, the RMS is a measure of the moving standard
deviation and, therefore, variance. The key parameter in the moving RMS metric is the
window size, or the number of points that are included in each calculation of the RMS. For
this paper, a window size of 10,000 points was selected such that extremes from a given
basin did not influence the moving RMS enough to provide any misidentified excursions
into the large attractor while ensuring that individual excursions could be separated from
each other. Of course, there are uncertainties or expected fluctuations with estimating the
moving mean and variance. To account for these uncertainties, probability distributions of
the moving RMS were estimated using a Kernel Density Estimator (KDE) and the x-value
at the largest magnitude peak of said distribution was considered a principal value. Using
the x-value of the largest magnitude peak as the principal value is essentially taking the
most probable RMS of the most represented attractor as the basis for potential stationarity.
Given the fact that the moving RMS is essentially a filter and it “smooths” out excursions
with window size selection, the rarity of threshold exceedances is increased even more.
Therefore, a measure of Gaussian rareness was applied to set the threshold and account
for any natural variations. The rareness of an event in a Gaussian process is typically
normalized by the standard deviation of the process, as is mentioned in Section 1. In this
paper, the threshold was set at 10 standard deviations of the moving RMS above the mean
RMS for the entire time series. The moving RMS pdfs were not necessarily Gaussian, but,
by using a larger number of standard deviations, the probability of non-exceedance does
increase and is sufficient for this application. To determine the standard deviation of the
moving RMS, the variance of a truncated pdf of the moving RMS was calculated. The
truncation point of the moving RMS pdf was determined by cutting the pdf off at a point
that the principal attractor was no longer represented. An example pdf of the moving RMS
along with the truncation point is shown in Figure 1.
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Figure 1. An example pdf showing where the truncation point was placed for estimated statistics for
the dominant attractor.

It can be said with reasonable confidence that excursions above this threshold are
likely the result of the RMS, and, therefore, the variance, changing with time rather than
statistical uncertainty. Excursions are defined in this paper to be the amount of upcrossings
of the moving RMS above the threshold. An example graph of one of these tests can be



Eng. Proc. 2023, 39, 102

50f18

seen in Figure 2 where a moving RMS window of 10,000 points was used and there were
four excursions above the threshold.

Time Series
Moving RMS

Mean RMS of the Dominant Attractor
= = Threshold

Response [ ]

20 - 4

30 b 4

40 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 35

Time [s] x10%

Figure 2. The moving RMS of an example Duffing oscillator compared with the threshold and the
average RMS of the dominant attractor.

2.3. System Parameters

System parameter selection was performed such that there were interesting dynamics,
defined here as transitions between domains of attraction, and three systems of varying
non-stationarity. Table 1 lists the fixed system parameters, including the modal period, T},
and the significant wave height, H, of the ITTC spectrum.

Table 1. Values for the system parameters.

Parameter Value
d 0.02
a 1.00
B 0.04
T 2.10
H; 3.00

The forcing factors were selected such that there was a system that was stationary;, i.e.,
zero excursions in the stationarity test, a system with some non-stationarity, i.e., one or two
excursions per time series, and a system with major non-stationarity, i.e., several excursions
per time series. It follows that the systems with the non-stationarity feature “jump” to a
larger domain of attraction. These dynamics are a result of the system parameter selection,
namely, F; and T;,. The tests discussed in Section 2.2 were used to modulate the degrees
of non-stationarity. Each test was run for 10 time series of 222 time steps and a time step
of 0.05 s, and the number of excursions for each time series and the forcing factor were
recorded and averaged. The forcing factors, threshold information, and average number
of excursions are shown in Table 2. Note that fewer excursions indicate more stationary
processes. Stationary processes have a very high probability of having zero excursions.

Table 2. Forcing factors selected for analysis, the standard deviation of the dominant attractor, op4,
the threshold for counting excursions, and the number of threshold exceedances.

F opA Threshold Nexe
10.0 0.85 1.06 0.0
14.7 1.36 2.58 0.8

17.0 1.78 6.41 18.2
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Figures 3-5 show characteristic graphs of the stationarity tests.
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Figure 3. An example stationarity test for F; = 10.0. Note that there are no excursions in this example.
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Figure 4. An example stationarity test for Fs = 14.7. Note that there is a single excursion in this example.
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Figure 5. An example stationarity test for F; = 17.0. Note that are 19 discrete excursions in this example.

In Figures 3-5, the excursions above the given threshold increase as the forcing factor
increases. The number of excursions for the F; = 14.7 case ranged from zero to two



Eng. Proc. 2023, 39, 102

7 of 18

excursions in a given time series. In the F; = 14.7 and Fs; = 17.0 cases, it is clear that the
variance changes with time and the processes are not stationary.

To provide a more intuitive measure of the non-stationarity, magnification curves for
each system are shown in Figures 6—8 and extreme pdfs for 58-h exposure periods are in
Figure 9.
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Figure 6. Magnification curve for F; = 10.0 along with the peak forcing frequency. Note that the
dotted line is an unstable branch.
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Figure 7. Magnification curve for F; = 14.7 along with the peak forcing frequency. Note that the
dotted line is an unstable branch.

The peak forcing frequency of 3.0 rad /s corresponds to the modal period of 2.1 s,
where there are two stable responses for each forcing factor. These stable responses act
as domains of attraction for the oscillator. The magnitude of the larger stable response
decreases with an increasing forcing factor, which explains the increase in the frequency
of excursions into the larger domain. The upper branch is generally not sustained for
extended periods of time, but larger forcing factors can result in a longer duration of upper
branch oscillations. Simply put, weak sense stationarity dictates that both the mean and
variance remain constant in time. While the mean of each time series remains constant, it is
clear that the variance would change due to the excursions into the larger domain.



Eng. Proc. 2023, 39, 102

8 of 18

o

— — Peak Forcing Frequency
Magnification Curve

»
3
T

Magnification Factor
o I\ w
(31 N (31 w (51 >
T

0.5

0 | | M s o !
0 1 2 3 4 5 6 7 8 9 10 "
Frequency [rad/s]

Figure 8. Magnification curve for F; = 17.0 along with the peak forcing frequency. Note that the
dotted line is an unstable branch.
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Figure 9. Kernel density estimated probability density functions for the largest value in a 58-h long
time series for each forcing factor.

The three extreme PDFs for the different forcing factors give an idea of how often
excursions occur. Note that these are drawn from the maximum value in each of 4000 Monte
Carlo simulations of length N = 222 points. In the F; = 10.0 case, the extreme PDF is almost
entirely limited to the lower domain of attraction, while the Fs = 14.7 case is split between
the two domains of attraction. The F; = 10.0 case had five total excursions in the entire set
of 4000 Monte Carlo simulations of length N = 2%2. Each time series in the F; = 17.0 case
had at least one excursion, and the extreme PDF reflects that.

2.4. Matched Upcrossing Equivalent Linear System (MUELS) Method

To generate extreme realizations of a non-linear system such as the Duffing oscillator,
the MUELS method, developed in [11], was used. In [11], the authors used the MUELS
method to estimate extreme characteristics for a set of stationary Duffing oscillators. The
MUELS method uses linear systems with the same upcrossing frequency of the non-linear
system of interest as surrogate processes to be input into the Design Loads Generator (DLG).
A linearization scheme typically matches variance or RMS between the non-linear system
of interest and the linearized system, as in [6]. Here, the goal is to find a linear system
with, on average, the same number of peaks (note that a peak here implies a maximum
between zero-upcrossings) as the non-linear system of interest. The linear systems used in
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this paper consist of two parameters: the damping ratio, {, and linear natural frequency,
wy, and are set up as in Equation (3).

£(t) + 2w, 0k () + wix(t) = F(t) 3)

where x(t) represents the response, x(t) is the velocity, ¥(t) is the acceleration, and F()
is the forcing. A contour of constant zero-upcrossing period (for a given input spectrum)
can be generated over a field of damping ratios and linear natural frequencies from which
candidate linear systems can be drawn and input as transfer functions into the DLG. The
DLG provides realizations of extreme linear responses for the return period of interest and
the input that led to those extreme realizations. Those input time series are a valid input
into the Duffing oscillator and result in conditional extremes for the system of interest. The
idea driving the MUELS method is that, for each non-linear system, there likely exists at
least one linear system that shares extreme characteristics with it, namely, an input that
leads to extremes. The MUELS method scans equivalent linear systems with the same
average upcrossing frequency and, therefore, the same number of upcrossings in a return
period in an attempt to find a linear system that can be used as a surrogate for the non-linear
system of interest. The current method for selecting the surrogate is to choose the set of
inputs that lead to the largest most probable maximum response in the non-linear system
of interest.

The MUELS method uses the Target Extreme Value (TEV), as discussed in Section 1,
as a metric for the return period. The TEV measures the rareness of Gaussian processes
and does not necessary share a correlation with the rareness of non-Gaussian processes. A
flowchart detailing the MUELS method is shown in Figure 10.

In this paper, the DLG was set up to produce 1000 realizations of 100 s for each
MUELS run. Furthermore, 2048 frequency components were used to ensure fine enough
discretization for the various linear natural frequencies and resulting transfer functions.
The current method to select parameters was to choose the set that results in the extreme
PDF whose peak has the largest x-value. This method was used due to the lower bound
property inherent to the DLG [8].

2.5. Monte Carlo Simulations

To evaluate the MUELS method, Monte Carlo simulations (MCS) were also performed.
For each system, 4000 runs of 222 points with a time step of 0.05 s, or 58.3 h, were generated.
The time frame of 58.3 h corresponds to a TEV of about 4.80 in each forcing factor case,
with slight variations following the change in upcrossing period. The MUELS method was
trained with time series of length 218 or 3.6 h, and the DLG return period was selected to
match the length of the Monte Carlo simulations. For the Fs = 14.7 case, the excursion into
the more extreme domain, around 14,000 s in Figure 4, does not always appear in the 58 h
time series. In fact, in the 4000 simulations, an excursion into the larger domain occurred in
57% of the simulations. This irregularity was intentional to be representative of systems for
which there is a limited amount of data and that may have unknown dynamics.

The comparison of the MCS and the MUELS method was performed using a practical
approach. The computational expense for the MCS and MUELS method was compared.
The desired exposure period of 58.3 h plays a role in the computational expense and the
comparison would differ with a different exposure period. The extreme PDF of a non-
linear process for a given exposure is useful in design but is not always easy to generate.
Therefore, the extreme PDFs generated from the MCS results were compared to extreme
PDFs generated from the MUELS method results using selected characteristics. While the
actual magnitude of the extreme values is useful to have, the time series are also vital so
that the response of other degrees of freedom during an extreme event can be observed. As
such, the time series structure of the MCS and MUELS method results near extremes was
also compared.
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Figure 10. The Matched Upcrossing Equivalent Linear System (MUELS) method flowchart.

3. Results and Discussion
In this section, the results of the different studies are presented and discussed.

3.1. MUELS Method Performance at a Fixed TEV
For each forcing factor value, around 20 sets of parameters were input as equivalent
linear systems into the DLG. While the return period for each forcing factor was the same,
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the zero-upcrossing period, and therefore the TEV, changed. Figures 11-13 show the
contours for each forcing factor.
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Figure 11. The equivalent linear system contour for F; = 10.0 along with the zero-upcrossing
frequency of 2.8458 rad/s. Note that w is the peak frequency of the input spectrum and wy, is the
linear natural frequency.
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Figure 12. The equivalent linear system contour for F; = 14.7 along with the zero-upcrossing
frequency of 2.6984 rad/s. Note that w, is the peak frequency of the input spectrum and wy, is the
linear natural frequency.

As seen in Figures 11-13, increasing the forcing factor shifts the contour to the left. As
the Duffing oscillators become more and more non-linear and non-stationary due to the
increased forcing factor, there are fewer equivalent linear systems available to represent
the Duffing oscillators. As such, the probability that there exists a linear system that
shares inputs that lead to extremes with the non-linear system of interest decreases. The
parameters from these contours are sampled such that about 20 sets of parameters were
selected for input into the DLG for the purpose of simplicity and speed. Furthermore, the
bulk of these sets of parameters fall near the bend in the contours, at frequency ratio values
above 1.0. The majority of resulting natural frequencies fall below 1.0 rad/s, which may
have an effect on the performance of the MUELS method due to the distance between the
ELS natural frequencies and the peak forcing frequency. While it is possible that increasing
this discretization, i.e., using more parameter sets from around the contour, would increase
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accuracy and performance, only around 20 parameter sets from each contour were used for
this paper.
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Figure 13. The equivalent linear system contour for F; = 17.0 along with the zero-upcrossing
frequency of 2.5850 rad/s. Note that w, is the peak frequency of the input spectrum and wy, is the
linear natural frequency.

Table 3 outlines the TEV and selected parameters for each forcing factor. The parameter
selection process is detailed in Section 2.4.

Table 3. The TEV for the given return period and the selected linear natural frequencies, wy, and
damping ratios, g, for each forcing factor.

Fs TEV Wy, sel (-sel
10.0 4.793 0.059 0.006
14.7 4.774 0.196 0.009
17.0 4.761 0.148 0.006

The linear natural frequencies and resulting transfer functions selected have little over-
lap with the energy from the input spectrum. Further investigations into the importance of
prioritizing systems whose transfer functions overlap more with the input spectrum will
be considered in future work.

One of the major benefits of the MUELS method is the increase in computational effi-
ciency compared to Monte Carlo simulations. In this application, a single MUELS running
for each forcing factor, including gathering training data and producing 1000 realizations,
took 14,705 s on a quad-core processor. To produce 4000 Monte Carlo simulations for the
same return period of 58 h took 144,840 s on eight cores. While there were more MCS
produced, generating an equivalent number of MUELS realizations would add around
900 s per parameter set, or about 18,000 s for an entire MUELS run.

The current configuration of MUELS, which takes about 10-15% of the time of Monte
Carlo simulations, allows for some increase in fidelity at the cost of computational effort.
One area that could improve the accuracy of the MUELS method would be, as mentioned
earlier, a finer discretization of the contour to examine more parameter sets.

Figures 14-16 show the selected MUELS extreme PDF and the extreme Monte Carlo PDF
for each forcing factor. Note that each PDF was generated using a kernel density estimator.
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Figure 14. The extreme value PDF for the Monte Carlo simulations and the selected extreme value

distribution for the MUELS method for Fs = 10.0.
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Figure 15. The extreme value PDF for the Monte Carlo simulations and the selected extreme value

distribution for the MUELS method for F; = 14.7.
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Figure 16. The extreme value PDF for the Monte Carlo simulations and the selected extreme value

distribution for the MUELS method for F; = 17.0.
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In the F; = 10.0 case in Figure 14, the MUELS method extreme PDF predicted the
most probable maximum of the Monte Carlo simulations well. The MUELS method PDF
has a larger standard deviation than the MCS PDF but has a large amount of overlap and,
therefore, valid extreme realizations.

The MUELS method was able to recover the two attractors in the Fs = 14.7 case
successfully. The under-prediction here could be the result of the TEV, given the levels of
non-linearity that were introduced or since there are now essentially two return periods
to examine: that of the small attractor and that of the large attractor. While the MUELS
method does under-predict the MCS in the most probable maxima of both attractors, there
is still a good amount of overlap that can provide valid extreme realizations.

In the F; = 17.0 case, the MUELS method retained some realizations that did not
contain excursions. Furthermore, the amount of overlap between the MUELS method PDF
and the Monte Carlo PDF is reduced even more.

The immediately evident and important characteristic of the F; = 14.7 PDF is the
bi-modality, while the Fs = 10.0 and F; = 17.0 cases exhibit uni-modality in the smaller
domain of attraction and larger domain of attraction, respectively. The most obvious
comparison we can make between the MCS and MUELS method is the x-value location
of the peaks and the area of each of the peaks. It should be reiterated that each peak is
representative of a different domain of attraction, as indicated in Section 2.2. As such, the
area and the x-value of the maximum of each peak were used to compare the MUELS
method with the Monte Carlo simulations. Table 4 shows the specified characteristics of the
extreme MCS and MUELS PDFs and the mean absolute percentage error between the two.

Table 4. Comparison of pertinent PDF characteristics between the MUELS method and Monte Carlo
simulations. The mean absolute percentage error (MAPE) between the MUELS method and MCS is
also shown. Note that, for F; = 10.0 and F; = 17.0, there was only one attractor in the Monte Carlo
simulations and, therefore, only one peak to compare.

F, = 10.0 F, =14.7 F, =17.0
Characteristic MUELS MCS MAPE MUELS MCS MAPE MUELS MCS MAPE
Peak 1 X-Value 4.55 4.44 0.03 7.62 8.64 0.12 8.71 N/A N/A
Attractor 1 Area 1.00 1.00 0.00 0.66 0.57 0.16 0.16 N/A N/A
Peak 2 X-Value N/A N/A N/A 25.02 28.19 0.11 25.52 31.29 0.18
Attractor 2 Area N/A N/A N/A 0.34 0.43 0.21 0.84 1.00 0.16

There were a limited number of excursions in the Fs = 10.0 Monte Carlo simulations,
which is not reflected in the significant figures shown. That being said, the performance
of the MUELS method for Fs; = 10.0 produced results nearly identical to MCS. This was
expected, as the F; = 10.0 case is nearly linear, which resulted in a closer match between
the ELS and the actual oscillator. While the MUELS PDF had more variance, as seen
in Figure 14, this provides a solid foundation to produce an infinite number of extreme
realizations at any return period of interest.

For F; = 14.7, the MUELS method under-predicts the MCS in both peak x-value and
number of simulations with excursions. The under-prediction could be due to the MUELS
method reaching the non-linearity limits or it could be due to the TEV selection. For this
section, the TEV was determined simply by using the return period of 58.3 h and the zero-
upcrossing period for each forcing factor. It is important to reiterate that the TEV becomes
less meaningful as more non-linearity is introduced. The TEV is still a good starting point
but cannot be expected to produce accurate results without any changes made to account
for non-linearity.

For F; = 17.0, the MUELS method under-predicted the MCS again. In fact, there were
a number of DLG inputs that did not result in an excursion in the 100-second realization.
The under-prediction here is most likely the result of both TEV selection and reaching
the non-linear limits of the MUELS method. Despite this, the large attractor x-value of
the peak fell within 20% of the MCS most probable maximum and there are a number of
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realizations that overlap with the Monte Carlo extreme PDE. In practice, the amount of
overlap would not be known, but schemes are being developed to form an acceptance—
rejection method based on extreme value theory and knowledge of the system, which will
enable one to estimate the amount of overlap between the true extreme value distribution
and the extreme PDF from the MUELS method.

3.2. Time Series Comparison

One of the major benefits of the MUELS method is the ability to produce any number
of time series realizations that lead to an extreme response. It should be reiterated that
the difference between just running Monte Carlo simulations and the MUELS method is
that the MUELS method uses the DLG to produce multiple sets of input realizations from
different equivalent linear systems of relatively short length. After the equivalent linear
system parameters are selected, the DLG is capable of producing many realizations for
that set of linear parameters that potentially lead to extremes in the non-linear system of
interest. That being said, it is important to compare the MUELS method time series with
Monte Carlo simulations to ensure that the time series have the similar characteristics near
extremes. The phase sampling procedure in the DLG results in input time series that lead
to linear extremes at ¢t = 0. Using the time series as input into the non-linear system will
not necessarily result in an extreme or potential extreme at f = 0 and that is reflected in
the ensemble average time series. The lag is more noticeable when compared to the Monte
Carlo simulation ensemble average near extremes, which was set to have the extreme at
t = 0, so the magnitudes were scaled and normalized to match the relationship between
the peak value of the largest attractor for the Monte Carlo simulations and the MUELS
method. Figures 17-19 show these normalized ensemble averages near extremes for the
Monte Carlo simulations and the MUELS method for each forcing factor.
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Figure 17. Ensemble average of the time series near extremes for Monte Carlo simulations and the
MUELS method for F; = 10.0. Note that the MUELS method results are not centered.

In the F; = 10.0 case, the MUELS method and Monte Carlo simulations have very
similar mean frequencies near + = 0 and the magnitudes of the peaks leading up to the
extreme value. Since the F; = 10.0 case is the most linear and, therefore, more immediately
compatible with the DLG, it follows that it would produce time series that are closer to
Monte Carlo simulations. It also seems to capture the dynamics shown in the Monte Carlo
simulations further away from the extreme.

In the F; = 14.7 case, the MUELS method ensemble average seems to have a lower
characteristic frequency than the Monte Carlo simulations. This may be a result of the lag
mentioned earlier as the zero-upcrossing period should remain constant due to the fact
that the input time series are valid realizations of the input spectrum. It is also interesting
to note that the minimum value of the MUELS method after the positive peak follows the
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behavior of the Monte Carlo simulations while having a larger magnitude than the positive
maximum of the MUELS method.
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Figure 18. Ensemble average of the time series near extremes for Monte Carlo simulations and the
MUELS method for F; = 14.7. Note that the MUELS method results are not centered.
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Figure 19. Ensemble average of the time series near extremes for Monte Carlo simulations and the
MUELS method for Fs = 17.0. Note that the MUELS method results are not centered.

In the F; = 17.0 case, the MUELS method again has a lower characteristic frequency
than the MUELS method. The buildup to the maximum is not as gradual or symmetric, as
shown in the Monte Carlo ensemble average, but again re-centering the MUELS time series
would reduce some of these deviations.

A future comparison between the MUELS method and Monte Carlo simulations would
center the MUELS ensemble average to have a clearer comparison between the magnitudes
of the ensemble average between the MCS and MUELS method. While the re-centering
would improve the MUELS method performance relative to the Monte Carlo simulations,
there may be another point of improvement in the TEV selection.

4. Conclusions

In this paper, the abilities and the limits of the MUELS method were tested. Three
systems of varying non-linearity and non-stationarity were used to compare the MUELS
method with the conventional method of Monte Carlo simulations. The key characteristic
in each of the systems was the number of excursions into a domain of attraction with
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peak magnitudes two to three times larger than the base domain of attraction’s peaks. In
general, the MUELS method under-predicted extreme characteristics found using Monte
Carlo simulations but remained within about 20%. That being said, the computational
expense of the MUELS method was only 10-15% of the Monte Carlo simulations on a less
computationally powerful setup. The reduced load could allow for a larger number of
potential surrogate linear systems for the MUELS method to test.

One of the major benefits of the MUELS method is the ability to produce time series
realizations of conditional extremes. In comparing the ensemble average of the MUELS
method and Monte Carlo simulations near extremes, it was found that there was a degra-
dation in accuracy as non-linearity increased. One main cause of this is likely the fact that,
while the DLG produces extreme linear time series with a maximum at ¢t = 0, there is
no basis for those inputs to provide a non-linear realization with a maximum at exactly
t = 0. Additionally, a centering of the maximum values before taking the ensemble average
would certainly improve both the ensemble average magnitude and average period when
compared to Monte Carlo simulations.

Future studies into using alternative TEVs to minimize the distance between the
MUELS method extreme PDF, the Monte Carlo simulations, and finer discretized parameter
contours could potentially improve the MUELS method performance.
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