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Abstract: The forecasting of a signal that locally satisfies linear recurrence relations (LRRs) with
slowly changing coefficients is considered. A method that estimates the local LRRs using the subspace-
based method, predicts their coefficients and constructs a forecast using the LRR with the predicted
coefficients is proposed. This method is implemented for time series that have the form of a noisy
sum of sine waves with modulated frequencies. Linear and sinusoidal frequency modulations are
considered. The application of the algorithm is demonstrated with numerical examples.
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1. Introduction

Let us consider the problem of forecasting time series using singular spectrum anal-
ysis (SSA) [1–6]. The theory of SSA is quite well-developed; there are many papers with
applications of SSA to real-life time series (see, for example, [6] and [7] (Section 1.7) with
short reviews). SSA does not require a time-series model to construct the decomposition
into interpretable components such as the trend, periodicities, and noise. However, for
prediction in SSA, it is assumed that the signal (the deterministic component of the time
series) SN = (s1, . . . , sN) satisfies some model, in particular, a linear recurrence relation
(LRR) with constant coefficients (maybe, approximately):

si+d =
d

∑
k=1

aksi+d−k for i = 1, . . . , N − d. (1)

This assumption is valid for signals in the form of a sum of products of polynomial,
exponential, and sinusoidal time series, in particular, a sum of exponentially modulated
periodic components. SSA also works for the case of trend extraction and the general case
of amplitude-modulated harmonics, where the model is satisfied approximately. However,
SSA is not applicable if the signal locally satisfies a changing LRR. An example of such
a signal is sinusoidal frequency-modulated time series. This paper aims to construct a
method for the prediction of time series locally governed by changing LRRs, staying within
the framework of SSA.

Let us consider the model of time series in the form of a noisy signal, where the signal
is locally governed by LRRs with slowly time-varying coefficients. A local version of SSA
has already been considered earlier for signal estimation [8]. However, it results in different
approximations of the segments of the time series and the prediction can be performed
based on the last segment only. In this paper, a local modification of the recurrent SSA
prediction, based on the construction of a prediction of the coefficients of the local LRRs,
is proposed. This modification was applied to time series in which the signal is a sum of
sinusoids with time-varying frequencies having non-intersecting frequency ranges, where
the instantaneous frequency of each summand is slowly varying.
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2. Basic Notions
2.1. Linear Recurrence Relations

Let us introduce several definitions. By time series of length N we mean a sequence of
real numbers XN = (x1, . . . , xN) ∈ RN . Consider a time series in the form of the sum of a
signal and noise XN = SN + RN and state the problem of signal forecasting.

A time series SN satisfies a linear recurrence relation (LRR) of order d if there exists a
sequence {ai}d

i=1 such that ad 6= 0 and (1) takes place.
A time series governed by an LRR satisfies a set of LRRs, one of which has minimal

order; we will call it minimal LRR. Among the set of the governing LRRs, there is the
so-called min-norm LRR with the minimum norm of coefficients, which suppresses noise
in the best way [5] and is used for the recurrent SSA forecasting.

The characteristic polynomial of LRR (1) is defined as

Pd(µ) = µd −
d

∑
k=1

akµd−k.

The roots of the characteristic polynomial of the minimal LRR are called signal roots. The
characteristic polynomial corresponding to an LRR governing the signal includes the signal
roots, among others.

Remark 1. Since Pm(µ) =
m
∏

k=1
(µ − µk) = µm −

m
∑

k=1
akµm−k, the roots of the characteristic

polynomial provides the LRR coefficients, and vice versa.

The following result [9] together with Remark 1 shows how to find the roots of the

governing minimal LRR si+r =
r
∑

k=1
aksi+r−k using the common term of the time series SN .

Let µ1, . . . , µp be the roots of the LRR characteristic polynomial with multiplicities k1, . . . , kp.

The time series SN satisfies the LRR if and only if sn =
p
∑

m=1

(
km−1

∑
j=0

cm jnj

)
µn

m, where cm j ∈ C

depends on s1, . . . , sr.

Example 1. Consider the time series SN = (s1, . . . , sN) with sn = A cos(2πωn + φ), ω ∈(
0, 1

2

)
. Since A cos(2πωn + φ) = Ae−iφe−i·2πωn/2 + Aeiφei·2πωn/2, we have µ1 = e−i·2πω,

µ2 = ei·2πω. Therefore, the characteristic polynomial is Pr(µ) = (µ − µ1)(µ − µ2) = (µ −
e−i·2πωn)(µ− ei·2πωn) = µ2 − 2µ cos 2πω + 1. Thus, a1 = 2 cos 2πω, a2 = −1 and si+2 =
2si+1 cos 2πω− si.

Remark 2. The method for constructing the min-norm LRR of a given order with the given signal
roots is described in [10]. This method will be used in the algorithm proposed in Section 3.2.

2.2. Harmonic Signal with Time-Varying Frequency: Instantaneous Frequency

In this paper, the basic form of signals will be the discrete-time version of

s(t) =
p

∑
i=1

cos(2πωi(t) + φi), (2)

where ωi(t), i = 1, . . . , p, are slowly changing functions. Note that if ωi(t) are linear
functions, the signal satisfies an LRR; see [4] (Section 2.2) and Remark 1.

Let s(t) = cos(2πψ(t) + φ). The instantaneous frequency of the signal s(t) is defined
as ωins(t) = ψ′(t). The instantaneous period is the function Tins(t) = 1

ωins(t)
. If ωins(a) = 0

for some a, we put Tins(a) = +∞. The frequency range of the signal SN is the range
ωins([1, N]), that is, the image of [1, N].
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Example 2. For the signal s(t) = cos
(

2π
( t

100
)2
)

, the instantaneous frequency ωins(t) = t
5000

is a linear function; the frequency range equals ωins([1, N]) =
[

1
5000 , N

5000

]
. For the signal s(t) =

cos
( 2π

20
(
t + 5 sin 2πt

100
))

, the instantaneous frequency equals ωins(t) = 1
20
(
1 + 5·2π

100 cos 2πt
100
)

and
is a periodic function with period equal to T = 100; the frequency range is

ωins([1, N]) ⊂
[

1
20

(
1− π

10

)
,

1
20

(
1 +

π

10

)]
.

We assume that on short segments of time, the signals considered in Example 2 are
well-enough approximated by a sinusoid with a frequency equal to the instantaneous
frequency in the middle of the segment. This assumption will be used for the construction
of the signal-forecasting algorithm.

2.3. SSA, Signal Subspace and Recurrent SSA Forecasting

In the version for signal extraction, SSA has two parameters, the window length L,
1 < L < N, where N is the time-series length, and the number of elementary components
r. At the first step of SSA, the trajectory matrix of size L × K, where K = N − L + 1, is
constructed and then decomposed into elementary components using the SVD. The leading r
SVD components are used for the estimation of the signal and the signal subspace basis, which
is used for constructing the forecasting LRR. Here is the scheme of the method given in [6]:

X
T−−→
L

X =

 x1 x2 ... xK
x2 x3 ... xK+1
...

...
. . .

...
xL xL+1 ... xN

 SVD:(
√

λm ,Um ,Vm), Πr−−−−−−−−−−−−−→
r


Lr = span(U1, . . . , Ur)

is the signal space;
Πr is the projector on Lr;
Ŝ = ∑r

m=1 Um(XT Um)T = ΠrX.

ΠH−−→ S̃ =


s̃1 s̃2 ... s̃K
s̃2 s̃3 ... s̃K+1
...

...
. . .

...
s̃L s̃L+1 ... s̃N

 T −1
−−→ S̃.

Thus, a concise form of the SSA algorithm for signal extraction is

S̃ = T −1 ◦ΠH ◦Πr ◦ T (X),

where ΠH is the projector to the set of Hankel matrices, that is, the set of trajectory matrices.
The L-rank of a time series is the rank of its trajectory matrix T (X), or, equivalently,

the dimension of the column space of T (X). For infinite time series and L > r, the rank is
equal to the order of the minimal LRR governing the time series. For example, the rank of
the signal S∞ = (s1, s2, . . .) with the common term sn = A cos(2πωn + φ) and ω ∈

(
0, 1

2

)
equals two.

The construction of the forecasting min-norm LRR of order L− 1 based on the SSA
decomposition follows the formula for the LRR coefficientsR [4] (Equation (2.1)):

R =
1

1− ν2

r

∑
i=1

πiUi =: (aL−1, . . . , a1), (3)

where Ui ∈ RL−1 is the vector Ui without the last coordinate, which is denoted by πi. The
forecast is constructed as s̃N+1 = ∑L−1

i=1 ai s̃N+1−i.
In addition to forecasting, the SSA decomposition allows one to estimate the signal

roots. Let us describe the ESPRIT (see [7] (Algorithm 3.3) and [11]) for signal-root estimation.
We define U := [U1 : . . . : Ur], U the matrix U without the first row and U the matrix U
without the last row. The ESPRIT estimates of the signal roots {µk}r

k=1 are the eigenvalues
of a matrix that is an approximate solution of the equation UD = U; e.g., D = (UTU)−1UTU
for the LS-ESPRIT version.
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3. Signal Forecasting by Forecasting of Local LRRs
3.1. General Model of Signals

Let us describe a general model of time series, for which the developed approach to
forecasting will be applied. Consider the signal SN and take some natural Z, 1 < Z < N.
For a time series Y, we denote YA,B the series (yA, . . . , yB).

The signal model is

sn =
p

∑
j=1

ρn
j (n) cos(2πψj(n) + ϕj), (4)

where we assume that

1. For the time series S, on its sequential segments Si,i+Z−1 of length Z,
i = 1, . . . , N − Z + 1, every summand in (4) is well-approximated by a series in the
form sapprox

n = ρn
j (n0) cos(2πωj,0 · n + φ), where ωj,0 = ψ′j(n0) and n0 = n0(i) is the

middle point of the segment.
2. The series ρj(n) and ψ′j(n) behave regularly in n, 0 < ψ′j(n) < 0.5 and there exist

methods that can forecast such kinds of series.

To construct a forecast sN+1 one needs to find the instantaneous frequencies at the
point N + 1.

3.2. Algorithm LocLRR SSA Forecast

Hereinafter, we will consider the model XN = SN + RN , where SN = (s1, . . . , sN)
satisfies the conditions described above and RN is white Gaussian noise with zero mean
and standard deviation σ. Let Z(i) = Xi,i+Z−1, i = 1, . . . , W, where W = N − Z + 1.
The estimates of instantaneous roots, frequencies, moduli and LRR coefficients will be
enumerated according to the middle of the local segment. In particular, denote {a(i)k }

r
k=1

the coefficients of the minimal LRR that approximates the local segment of the series
Si−[Z/2],i+[Z/2]−1 with the center in si.

The local segment of length Z has the structure depicted in Figure 1, where the middle
of Z(i0) is N + 1.

Time1 i i +
[

Z
2

]
Z(i)

i + Z− 1 N − Z + 1

Z(N−Z+1)

N

N −
[

Z
2

]
+ 1

Z(i0)

N +
[

Z
2

]

Figure 1. Scheme of moving segments.

3.2.1. Scheme

In the scheme below, we consider j = 1, . . . , p′, where p′ is the number of signal roots
with nonnegative imaginary parts (note that signal roots with negative imaginary parts are
conjugate to signal roots with positive imaginary parts):

XN {ρ(i+[Z/2])
j }W

i=1
FOR MODs−−−−−−→ {ρ̃(N+l)

j }M
l=1

↓ Z ↑ ↓
{Z(i)}W

i=1
ESPRIT−−−−→

L,r
{µ(i+[Z/2])

j }W
i=1 {µ̃(N+l)

j }M
l=1 → {R̃N+l}M

l=1.

↓ ↑
{ω(i+[Z/2])

j }W
i=1

FOR ARGs−−−−−−→ {ω̃(N+l)
j }M

l=1

Here {R̃N+l}M
l=1, where R̃k = (ãr, . . . , ã1) is the sequence of coefficients of the fore-

casting minimal LRRs. If the required length m of the forecasting LRRs is larger than r,
then we lengthen each R̃N+l , l = 1, . . . , M, to R̃(m)

N+l of the min-norm LRR of order m; see
Remark 2.
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The result is a sequence of coefficients of the forecasting min-norm LRRs {R̃(m)
N+l}

M
l=1

of order m. To obtain the results, the series of moduli and frequencies should be forecasted
using some algorithms FOR MODs and FOR ARGs for each j.

After the sequence of coefficients is constructed, the forecasting values S̃N+1,N+M =
(yN+1, . . . , yN+M) are taken from the time series

yn =

s̃n, n = 1, . . . , N,
m
∑

k=1
ã(n)k yn−k, n = N + 1, . . . , N + M,

where s̃n, n = 1, . . . , N, is the signal estimate obtained using SSA.

3.2.2. Algorithm in Detail

Let us formally describe the algorithm for forecasting the minimal LRRs (Algorithm 1).

Algorithm 1: LocLRR SSA Forecast
Input:
• time series XN = (x1, . . . , xN),
• forecast length M,
• local segment length Z,
• window length L,
• number r of leading eigentriples of the trajectory matrices of the local segments

that are used to find the estimates of the signal roots,
• length m of the forecasting LRRs,
• algorithm for forecasting the root moduli FOR MODs,
• algorithm for forecasting the instantaneous frequencies FOR ARGs.

Steps:

1. For each segment Z(i), i = 1, . . . , W, where W = N − Z + 1, estimate the signal

roots {µ(i+[Z/2])
j }r

j=1 of the approximating series using ESPRIT with window
length L and signal rank r. Suppose that the estimates of the roots form complex-conjugate
pairs. Choose the roots with positive argument

{µ(i+[Z/2])
j }p

j=1, i = 1, . . . , W, p = r
2 .

2. Arrange the first set of roots {µ(1+[Z/2])
j }p

j=1 in descending argument order.

3. Order the sets of roots {µ(i+[Z/2])
j }p

j=1, i = 2, . . . , W, so that the sum
p

∑
j=1

∣∣∣µ(i+[Z/2])
j − µ

(i+[Z/2]−1)
j

∣∣∣
is minimal among all possible permutations of {µ(i+[Z/2])

j }p
j=1.

4. For each i = 1, . . . , W and j = 1, . . . , p, calculate the moduli ρ
(i+[Z/2])
j = |µ(i+[Z/2])

j | and the

frequencies ω
(i+[Z/2])
j =

Arg µ
(i+[Z/2])
j

2π . For j = 1, . . . , p, set the series

P(j) =
(

ρ
(1+[Z/2])
j , . . . , ρ

(N−[Z/2]+1)
j

)
and Ω(j) =

(
ω
(1+[Z/2])
j , . . . , ω

(N−[Z/2]+1)
j

)
.

5. Using the algorithms FOR MODs and FOR ARGs, for each j = 1, . . . , p, construct

the forecast
(

ρ̃
(N+1)
j , . . . , ρ̃

(N+M)
j

)
of the series P(j) and the forecast

(
ω̃
(N+1)
j , . . . , ω̃

(N+M)
j

)
of Ω(j), respectively.

6. Using the obtained forecasts of frequencies and moduli, calculate the roots

µ̃
(n)
j = ρ̃

(n)
j exp(i 2πω̃

(n)
j ), n = N + 1, . . . , N + M, j = 1, . . . , p, supplement them

by their complex conjugates and then, using the relation between characteristic
polynomials and LRRs (see Remark 1), find the sequence {R̃N+j}M

j=1 of the LRR

coefficients, R̃N+j =
(

ã(N+j)
r , . . . , ã(N+j)

1

)
.

Output: The sequence {R̃N+l}M
l=1 of coefficients of minimal LRRs of order r approximately

governing the future signal segments Sl+N−[Z/2]−1,l+N+[Z/2].
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Remark 3. If real-valued roots are obtained on some segments of Z(i), i = 1, . . . , W, we replace
the values of the roots with missing values. That is, for i = 1, . . . , W and j = 1, . . . , r such that
µ
(i)
j ∈ R we put µ

(i)
j := NA (not available). Possible gaps in the series of frequency estimates can

be filled in; e.g., one can fill them with the iterative gap-filling method [12]; see also the description
of the igapfill algorithm in [7] (Algorithm 3.7).

An appropriate choice of the algorithms FOR MODs and FOR ARGs depends on the
form of the frequency modulation.

Finally, each LRR of {R̃N+j}M
j=1 is enlarged to a min-norm LRR of length m with

coefficients {R̃(m)
N+l}

M
l=1 (see Remark 2) and this enlarged LRR is used for the prediction

of sN+l .

4. Examples
4.1. Description

In this section, we demonstrate the forecasting using the LocLRR SSA Forecast algo-
rithm. The following types of time series were considered.

4.1.1. Sinusoid with Linearly Modulated Frequency

The signal has the form

s(t) = cos(2π(at)2), a 6= 0.

The instantaneous frequency is ωins(t) = 2a2t; the frequency range is ωins([1, N]) =[
2a2, 2a2N

]
. We will consider such values of the parameter a and series length N at which

the frequency range ωins([1, N]) ⊂ (0, 0.5). Since the instantaneous frequency is a linear
function, we will take the linear-regression-prediction algorithm as FOR ARGs.

4.1.2. Sinusoid with Sinusoidal Frequency

The signal is

s(t) = cos(2πωext(t + b sin 2πωintt)), b > 0,

ωext, ωint ∈ (0, 0.5), where ωint is much smaller than ωext. The instantaneous frequency
equals ωins(t) = ωext(1 + 2πωintb cos 2πωintt); the frequency range is ωins([1, N]) =
[ωext(1− 2πωintb), ωext(1 + 2πωintb)]. We will consider values of signal parameters and
series lengths such that ωins([1, N]) ⊂ (0, 0.5). The rank of the time series of the series ΩN
of instantaneous frequencies with terms ωn = ωins(n), n = 1, . . . , N, is equal to 3. There-
fore, we take the recurrent SSA forecasting algorithm with r = 3 as FOR ARGs; the window
length L is chosen to be half of the length of the frequency-estimation series following the
general recommendations.

Since we do not consider time-varying amplitude modulation in the examples, we
take the forecast of moduli series using the average value over local intervals as algorithm
FOR MODs.

4.1.3. Sum of Sinusoids

The signal is

s(t) =
p1

∑
j=1

cos(2π(ajt)2) +
p2

∑
k=1

cos
(

2πωext
k

(
t + bk sin 2πωint

k t
))

, (5)

aj 6= 0, j = 1, . . . , p1, ωext
k , ωint

k ∈ (0, 0.5), bk > 0, k = 1, . . . , p2. We will consider the signal
parameters and the time-series length N such that the frequency ranges of the summands
are not mutually intersected and the frequency range of each summand belongs to the
interval (0, 0.5).
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The frequencies corresponding to the signal summands of s(t) will be forecasted
either with linear regression or with SSA, based on the type of obtained estimates of the
instantaneous frequencies on the local segments. The moduli will be predicted using the
average of the estimates over the local segments.

In numerical examples, we will consider the signal parameters such that the instan-
taneous frequencies are slow-varying functions. Since the examples under consideration
satisfy the general time-series model (Section 3.1), the LocLRR SSA-forecast algorithm can
be used for forecasting.

In real-life problems, the value of the optimal LRR order m can be chosen based on the
training data. In the model examples, the value of the optimal LRR order m will be chosen
by trying all possible values of m in the range from r to Z and comparing the mean squared
errors (MSE) of the predictions.

The following approach was used for choosing the length Z of local segments. We take
such a value of the parameter Z that most of the local segments Z(i), i = 1, . . . , W, contain
at least 2–3 instantaneous periods of each summand of the signal satisfying model (5). For
small Z, we obtain estimates of the instantaneous frequency with large variability, whereas
for large Z, we have a considerable bias. The necessary condition for appropriate values of
Z is that there are no (or a few) segments providing real-valued roots.

4.2. Numerical Experiments

Consider the following numerical examples:

• Sinusoid with linearly modulated frequency,

sn = cos
(

2π
( n

100

)2
)

(denoted by cos(n2));
• Sinusoid with sinusoidal frequency modulation,

sn = cos
(

2π

20

(
n + 5 sin

2πn
100

))
(denoted by cos sin(n));

• Sum of sinusoids with linear and sinusoidal frequency modulations,

sn = cos
(

2π
( n

100

)2
)
+ cos

(
2π

10

(
n + sin

2πn
100

))
(6)

(denoted by cos(n2) + cos sin(n));
• Sum of two sinusoids with sinusoidal frequency modulation,

sn = cos
(

2π

20

(
n + sin

2πn
100

))
+ cos

(
2π

10

(
n + 2 sin

2πn
140

))
(denoted by cos sin(n) + cos sin(n)).

We compare the proposed LocLRR SSA-forecast algorithm (denoted by “alg”) with
two simple methods:

• Forecasting by constant, which forecasts by zero, since we consider time series with
zero average (denoted by ‘by 0’).

• Forecasting using the last local segment, which is performed with the min-norm LRR
computed using the roots of the last local segment Z(N−Z+1) = (xN−Z+1, . . . , xN)
(denoted by ‘last’).



Eng. Proc. 2023, 39, 12 8 of 10

Let us consider accuracies of M = 30 step ahead forecasts for time series of length
N = 300. For each example, the prediction is performed for the pure signal and the noisy
signal, where the noise is white Gaussian with standard deviation σ = 0.25. In the noisy
case, a sample of size P = 100 is used for the estimation of accuracy.

Let {X(i)
N }P

i=1 be the time-series sample. The prediction error is estimated as RMSE =√
1
P

P
∑

i=1
MSE(S̃(i)N+1,N+M,SN+1,N+M).

The results are shown in Table 1, where the best results are highlighted in bold.
They confirm the advantage of the proposed method over the simple methods under
consideration.

Table 1. RMSE of forecasts; ‘alg’ is the proposed algorithm; m is the optimal length of the forecast-
ing LRRs.

Signal SN σ by 0
Last Alg

RMSE m RMSE m

cos(n2)
0 0.689 0.717 2 0.014 3

0.25 0.733 0.754 5 0.135 11

cos sin(n)
0 0.698 0.309 2 0.097 2

0.25 0.741 0.438 5 0.232 6

cos(n2) + cos sin(n)
0 1.060 0.880 6 0.184 4

0.25 1.089 0.958 10 0.295 12

cos sin(n) + cos sin(n)
0 0.873 0.587 4 0.191 5

0.25 0.908 0.656 28 0.291 15

4.3. Detailed Example

To demonstrate the approach more clearly, let us consider the example (6) without
noise; see Figure 2. Take Z = 61, L = 30, r = 4.

The results of forecasting the signal root corresponding to the first summand are
shown in Figure 3, and the results of forecasting the signal root corresponding to the second
summand can be seen in Figure 4. The frequency ranges of modulations in the summands
are approximately [0, 0.06] and [0.094, 0.106], respectively. The forecasts are depicted in
Figure 5 (forecasting with the last segment) and Figure 6 (forecasting with the proposed
algorithm). Since there is no noise, the optimal LRR length m is small; here, m = 4.
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−
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Figure 2. Initial signal sn = cos
(

2π
( n

100
)2
)
+ cos

(
2π
10

(
n + sin 2πn

100

))
.



Eng. Proc. 2023, 39, 12 9 of 10

●●●●
●●●●●●

●●●●
●●●●

●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●●
●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●

0 50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

Index of interval

ω
(i)

●

●

Estimation
Theoretical
Forecast
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Figure 4. Forecasting the series of sinusoidal instantaneous frequencies for the summand
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Figure 5. Forecasting using the last local segment, RMSE = 0.88. A shift is clearly seen.
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Figure 6. Forecasting using LocLRR SSA forecast, RMSE = 0.2. There is no shift.
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5. Conclusions

In this paper, we proposed a method for forecasting time series that extends the capabili-
ties of SSA and allows one to predict time series in which the signal just locally satisfies LRRs.
A regular behaviour of the coefficients of the governed LRRs was assumed. In [6] (page 9),
it was stated for the considered type of time series that “[t]he problem is how to forecast
the extracted signal, since its local estimates may have different structures on different time
intervals. Indeed, by using local versions of SSA, we do not obtain a common nonlinear
model but instead we have a set of local linear models”. In this paper, we proposed an
answer to the problem of prediction of local structures of time series for some class of signals.

We constructed an algorithm for predicting local structures of time series that are the
sum of frequency-modulated sinusoids and showed that the proposed forecasting method
gives reasonable results for the cases of linear and sinusoidal frequency modulations.

Certainly, the considered comparison with a couple of simple methods is not enough;
a more extensive comparison should be performed in the future. However, the results of
this work show that the proposed approach based on the prediction of the coefficients of
LRRs is promising.
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