
Citation: Chang, T.-C.; Wu, M.-H.;

Lin, Y. Sum of Exponential Model for

Fitting Data. Eng. Proc. 2023, 38, 87.

https://doi.org/10.3390/

engproc2023038087

Academic Editors: Teen-Hang Meen,

Hsin-Hung Lin and Cheng-Fu Yang

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Sum of Exponential Model for Fitting Data †

Ting-Cheng Chang *, Min-Hao Wu and Ying Lin

Department of Computer Science, College of Information Engineering, Guangzhou Panyu Polytechnic,
Guangzhou 511483, China; minhao1616@126.com (M.-H.W.); ying.lins@outlook.com (Y.L.)
* Correspondence: tcchang0615@gmail.com
† Presented at the 3rd IEEE International Conference on Electronic Communications, Internet of Things and Big

Data Conference 2023, Taichung, Taiwan, 14–16 April 2023.

Abstract: As an approach to feature estimation, exponential fitting has attracted research interests
in mathematical modeling. Semantic networks are used for numerous applications in computers,
physics, and biology. However, such applications may have fitting troubles with various mathematical
tools. Therefore, we present a novel method of fitting 2n data points of a signal to a sum of n
exponential functions. The experiments proved that the proposed method operated well for linear
and nonlinear functions, as its algorithm was straightforward, practical, and easy to determine. At
the same time, the computational intricacy was considerably low, which has specific worth in use.
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1. Introduction

Relevant information with the linear combinations of real and complex exponentials
is pervasive in science and engineering applications. Given that Gaspard Riche de Prony
developed an approach [1] to resolve the problem for equally spaced samples, numerous
advancements, and applications have been proposed. We surveyed the most effective
ones to explain their applications and experiences and to allow their application in various
fields. A linear combination of exponentials was used in regular differential equations to
explain the different physical processes. After being modeled by the remedy of a formula, a
combination of exponentials provided valuable information such as decay rates or product
residential or commercial properties in a physical system. Likewise, the exponential fitting
had an excellent approximation on the compact of the domain with Fourier transformation
in complex exponentials [2–6].

The purpose of this study was to present a method of fitting real signal data sampled
at a period T in a set of 2n data points {x(0), x(T), x(2T), · · · , x([2n− 1]T)}. The data
points to the s curve were composed of n exponential functions with unknown weights and
exponents. Mathematically, this involved the solution of the following Equations (1)–(5).

x(kT) =
n

∑
i=1

ciepi(kT) (1)

For the unknown Ci and Pi in the complex conjugate pairs (Pi is an imaginary number),
Equation (1) represents a sum of sinusoids. This curve fitting can have many applications.
For example, if x(t) represents the impulse response of a linear time-invariant system, and
the Laplace transform of Equation (1) yields the transfer function of an nth-order model of
the system.

2. Curve Fitting Method

We let φi denote epi(kT) and xi denote x(kT). Then, Equation (1) could be rewritten as:
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c1 +c2 + · · ·+ cn = x0
c1φ1 +c2φ2 + · · ·+ cnφn = x1
c1φ2

1 +c2φ2
2 + · · ·+ cnφ2

n = x2
...

c1φ2n−1
1 +c2φ2n−1

2 + · · ·+ cnφ2n−1
n = x2n−1

(2)

Equation (2) is explained by the following theorem.

Theorem 1. The nonlinear equation, such as Equation (2), possesses a unique solution
{ck, Nk} (k = 1, 2, . . ., n) if and only with the following n × n matrix, which is nonsingular.

A ≡


x0 x1 · · · xn−1
x1 x2 · · · xn
...

...
...

xn−1 xn · · · x2n−2

 (3)

The solution for Nk is given by the n distinct roots of the nth degree polynomial equation.

det


1 x0 x1 · · · xn−1
φk x1 x2 · · · xn
φ2

k x2 x3 · · · xn+1
...

...
...

...
φn

k xn xn+1 · · · x2n−1

 = 0 (4)

The solution for ck can then be given by:

A =


1 1 1 · · · 1
φk φ2 φ3 · · · φn
φ2

k φ2
2 φ2

3 · · · φ2
n

...
...

...
...

φ2n−1
k φ2n−1

2 φ2n−1
3 · · · φ2n−1

n



−1

(5)


c1
c2
c3
...

cn

 = A


x0
x1
x2
...

xn−1

 (6)

3. Proof
3.1. Sufficiency Part

It could be supposed that A was nonsingular; the first n1 equation of Equation (2)
could be arranged as:

B =


1 1 1 · · · 1
φk φ2 φ3 · · · φn
φ2

k φ2
2 φ2

3 · · · φ2
n

...
...

...
...

φ2n−1
k φ2n−1

2 φ2n−1
3 · · · φ2n−1

n

 (7)
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B


c1
c2
c3
...

cn

 =


x0
x1
x2
...

xn−1

 (8)

We let the columns of the left-most matrix in Equation (8) be denoted as:

vk ≡
[
1 φk φ2

k · · · φn
k
]T , k = 1, 2, · · · , n (9)

and let x0 ≡
[
x0 x1 · · · xn

]T . Then, Equation (8) showed that x0 was a linear combina-
tion of {v1, v2, . . ., vn}.

Next, if the set of n + 1 consecutive equations in Equation (2) was considered as the
starting point with the second equation, they could be rearranged as:

1 1 1 · · · 1
φ1 φ2 φ3 · · · φn
φ2

1 φ2
2 φ2

3 · · · φ2
n

...
...

...
...

φn
1 φn

2 φn
3 · · · φn

n




c1φ1
c2φ2
c3φ3

...
cnφn

 =


x1
x2
x3
...

xn+1

 (10)

Equation (10) shows that x1 ≡ [x1, x2, . . ., xn+1]T was a linear combination of
{v1, v2, . . ., vn}.

Similarly, if we considered the set of n + 1 consecutive equations in Equation (2)
starting with the third equation, we could see that x2 ≡ [x2, x3, . . ., xn+2]T was a linear
combination of {v1, v2, . . ., vn}.

This continued until the last n + 1 of Equation (2) was taken, from which it was shown
that xn−1 ≡ [xn−1, xn, . . .x2n+1]T was a linear combination of {v1, v2, . . ., vn}.

Equation (3) of the Theorem implies that the vectors {x0, x1, . . .xn−1} are linear and
independent of each other. Hence, they span an n-dimensional subspace in an (n + l)
dimensional Euclidean space. This subspace must be the same as the one spanned by the
vectors {v1, v2, . . ., vn} since each xi, i = 0, 1, . . ., n−1 is a linear combination of the set
{v1, v2, . . ., vn}. It follows that the vectors {v1, v2, . . ., vn} are linearly independent and that,
from Equation (7) of vk (k = 0, 1, . . ., n), they must be distinct.

Moreover, each vk is a linear combination of {x0, x1, . . .xn+1}. This implies:

vk =


1
φk
φ2

k
...

φn
k

 = d1


x0
x1
x2
...

xn

+ d2


x1
x2
x3
...

xn+1

+ · · ·+ dn


xn−1

xn
xn+1

...
x2n−1

 (11)

Equation (11) could be rearranged as an (n + 1) × (n + 1) equation system.
1 x0 x1 · · · xn−1
φk x1 x2 · · · xn
φ2

k x2 x3 · · · xn+1
...

...
...

...
φn

k xn xn+1 · · · x2n−1




−1
d1
d2
...

dn

 = 0 (12)

Since the solution of Equation (12) was nontrivial, the determinant of the square matrix
had to vanish, leading to Equation (4) which was an nth-degree polynomial equation in Nk
because the coefficient of the nth power term of Nk could be seen from Equations (3) and (12)
to be (−1)n det A, which was assumed to be nonzero. The n roots Nk of Equation (4) must
be distinct because each Nk had to satisfy Equation (4) and be distinct. Having obtained the



Eng. Proc. 2023, 38, 87 4 of 6

distinct values of Nk, k = 0, 1, . . ., n, ck could be given by the first n equations (Equation (2)),
which led to Equation (6) in the Theorem.

As for the uniqueness of the solution, since every solution {ck, Nk} (k = 1, 2, . . ., n) had
to satisfy Equation (4), according to the above arguments, Equation (4) produced exactly n
distinct values for Nk, and the solution of Equation (2) was unique.

3.2. Necessity Part

Suppose Equation (2) has a unique solution {ck, Nk} (k = 1, 2, . . ., n). This implies the
following.

(i) Nk must be distinct from each other; otherwise, non-unique combinations of ck in
Equation (2) exist and are fulfilled.

(ii) None of ck vanishes; otherwise, the value of Nk associated with a vanishing ck
becomes non-unique.

The first n of Equation (2) gave:

C =


1 1 1 · · · 1
φ1 φ2 φ3 · · · φn
φ2

1 φ2
2 φ2

3 · · · φ2
n

...
...

...
...

φn−1
1 φn−1

2 φn−1
3 · · · φn−1

n



−1

(13)


c1
c2
c3
...

cn

 = C


x0
x1
x2
...

xn−1

 (14)

The next n of Equation (2), starting with the second equation, gave:

D =


1 1 1 · · · 1
φ1 φ2 φ3 · · · φn
φ2

1 φ2
2 φ2

3 · · · φ2
n

...
...

...
...

φn−1
1 φn−1

2 φn−1
3 · · · φn−1

n



−1

(15)


c1φ1
c2φ2
c3φ3

...
cnφn

 = D


x1
x2
x3
...

xn

 (16)

This proceeded until the set of n in the consecutive Equation (2), starting with the nth

equation, was reached.

E =


1 1 1 · · · 1
φ1 φ2 φ3 · · · φn
φ2

1 φ2
2 φ2

3 · · · φ2
n

...
...

...
...

φn−1
1 φn−1

2 φn−1
3 · · · φn−1

n



−1

(17)


c1φn−1

1
c2φn−1

2
c3φn−1

3
...

cnφn−1
n

 = E


xn−1

x2
xn+1

...
x2n−2

 (18)



Eng. Proc. 2023, 38, 87 5 of 6

Combining Equations (14) to (18) yielded:

F =


1 1 1 · · · 1
φ1 φ2 φ3 · · · φn
φ2

1 φ2
2 φ2

3 · · · φ2
n

...
...

...
...

φn−1
1 φn−1

2 φn−1
3 · · · φn−1

n



−1

(19)

G =


x0 x1 x2 · · · xn−1
x1 x2 x3 · · · xn
x2 x3 x4 · · · xn+1
...

...
... · · ·

...
xn−1 xn xn+1 · · · x2n−2

 (20)


c1 c1φ1 · · · c1φn−1

1
c2 c2φ2 · · · c2φn−1

2
c3 c3φ3 · · · c3φn−1

3
...

... · · ·
...

cn cnφn · · · cnφn−1
n

 = FG (21)

4. Examples

Consider the signal:
x(t) = 2e−2t − 3et (22)

Sampling this signal at a sampling period T = 1 yielded Equation (2) with
c1 = 2, c2 = −3, N1 = e−2 = 0.13533283, N2 = e1 = 2.718281828, x0 = −1, x1 = −7.88417491,
x2 = −22.130537, and x3 = −60.2516532. Let us reverse this process. After sampling four
consecutive points of the signal x(t) at a uniform sampling period T = 1, we obtained the
values of {x0, x1, x2, x3}, as indicated above, which could be solved for {c1, c2, N1, N2}. From
Equation (2), we obtained:

c1 + c2 = −1 (23)

c1φ1 + c2φ2 = −7.88417491 (24)

c1φ2
1 + c2φ2

2 = −22.130537 (25)

c1φ3
1 + c2φ3

2 = −60.2516532 (26)

First, we could see that:

A =

[
x0 x1
x1 x2

]
=

[
−1 −7.88417491

−7.88417491 −22.130537

]
(27)

was nonsingular. Nk was obtained as the root of Equation (4), which, in this case, led to:

det

 1 −1 −7.88417491
φk −7.88417491 −22.130537
φ2

k −22.130.537 −60.2516532


= −40.029677φ2

k + 114.2293714φk − 14.7260955
= 0

(28)

This yielded N1 = 0.135335283 and N2 = 2.718281828. Substituting these values into
Equation (6) provided:[

1 1
0.13533528 2.71828182

][
c1
c2

]
=

[
−1

−7.88417491

]
(29)
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from which we obtained c1 = 2 and c2 = −3. From known N1 and N2, p1 = −2 and p2 = 1
were obtained according to φi = epiT.

5. Conclusions

The problem of fitting 2n data points to a curve consisting of n exponential functions
was solved. The exponential functions were complex in general, with sinusoids being
a special case. The curve-fitting problem was solved by a system of nonlinear algebraic
equations. An example has been given to illustrate the procedure of this method.
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