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Abstract: Structure from the geometry and analysis of the three-spherical kinematic chain-base
parallel mechanism have been studied. The parallel mechanism evolved from an origami fold as
chain legs with three spherical kinematic chains becoming rigid bodies. The parallel mechanism with
a three 6R kinematic chain as three chain legs is complicated. The reconfiguration of the parallel
mechanism with full tilt–circle movement, kinematic, and workspace are investigated, too. This
parallel mechanism can be applied in specific applications with certain treatments.

Keywords: origami inspires; parallel mechanism; spherical mechanism

1. Introduction

The parallel mechanism is the system that converts the motions of several bodies into
constrained motions of other bodies [1]. The parallel mechanism has a closed-loop as a
type of mechanism [1], and that is made of an end-effector (mobile platform) [2] and a fixed
platform, linked together by independent kinematic chains [1]. Furthermore, structure,
workspace considerations, singularities, and link interference need to be considered in
the design [2]. The parallel mechanism has much potential in several fields, including
industrial, space, medical science, and miscellaneous applications [2].

Origami is Japanese cultural art, which is the art of folding paper. In general, origami
starts with flat paper (2D object), then folds become a 3D object with various shapes
and forms without stretching, cutting, or gluing [3]. Moreover, origami has become an
inspiration for engineers in various fields. Especially waterbomb-base origami has become
an inspiration in engineering for several applications. Fonseca and Savi [3] presented an
investigation of the origami waterbomb-base pattern from its unit cell and explored the
different formulations for origami structure. Liang, Gao, Huang, and Li [4] presented
the design of a pneumatic rigid–flexible coupling origami gripper from a waterbomb-
base origami pattern. Salerno, Zhang, Menciassi, and Dai [5] proposed the concept of a
miniaturized surgical tool grasper as a 3-DOF parallel module inspired by the waterbomb-
base origami.

It is common to see the creases of origami mechanisms as the compliant mechanism
joint with flexible material. However, the origami mechanism becomes rigid if the creases
are replaced with non-flexible material. One of the rigid kinematic origami models describes
the creases with the revolute joint mechanism [6].

2. Geometry of Parallel Mechanism

A parallel mechanism consists of a base, a platform, and legs to sustain the platform.
The leg structure is obtained from waterbomb-base origami, which involves the spherical
kinematic chain with a close loop structure. The parallel mechanism consists of three legs
and one actuator in the middle of the mechanism.
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2.1. Waterbomb-Base Origami for Spherical Mechanisms

As shown in Figure 1a,b, origami starts with flat paper and then folds to become
creases. The creases consist of two types. The first type has a convex shape called Mountain
creases, denoted by M, and the second type has a concave shape called Valley creases,
represented by V [7,8].
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represented for the revolute pairs and the links, respectively [7]. Thus, the waterbomb-
base origami form contains six revolute pairs and six links. Barreto et al. [8] made an anal-
ogy between the spherical mechanism and the origami vertex as a concept of mechanism 
design. 

Maekawa’s-Justin’s Theorem [9] is as follows. Let M be the number of mountain 
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Figure 1. Waterbomb-base origami involves a spherical mechanism. (a) origami starts with flat
paper; (b) origami starts fold become a crease; (c) the creases and the planes on the waterbomb-
base structure; (d) the figure mapping the spherical mechanism from the origami evolved; (e) the
spherical mechanism.

Waterbomb-base origami consists of six planes and six creases. Of the six creases, Ac
and Af are the valley-crease types, and Ab, Ad, Ae, and Ag are the mountain-crease types.
As shown in Figure 1c, the creases and the planes on the waterbomb-base structure are
represented for the revolute pairs and the links, respectively [7]. Thus, the waterbomb-base
origami form contains six revolute pairs and six links. Barreto et al. [8] made an analogy
between the spherical mechanism and the origami vertex as a concept of mechanism design.

Maekawa’s-Justin’s Theorem [9] is as follows. Let M be the number of mountain
creases and V be the number of valley creases adjacent to a vertex in a flat origami crease
pattern. Then, M − V = ±2. Moreover, Kawasaki–Justin’s Theorem [9] lets v be a vertex of
degree 2n is an origami crease pattern and α1 . . . , α2n be the consecutive angles between
the creases. Then, the creases adjacent to v (locally) fold flat only if

α1 − α2 + α3 − . . . − α2n = 0 (1)

That is, the two theorems correspond with waterbomb-base origami form. As shown
in Figure 1d,e, the figure mapping and the spherical mechanism from the origami evolve.
In the waterbomb base origami, Point A is the intersection of the whole of the connected
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creases, while in the spherical mechanism, point A is the virtual point intersection of the
axis from the whole revolute pair in the spherical kinematic chain. The revolute pair and
links are denoted with S and R, respectively. The link Ri (i = 1, 2, . . . , 6) is deformed by
revolute joints Si−1 and Si. Due to this close loop structure, link R6 forms by revolute joint
S6 and S1. R3 and R6 have a revolute joint for connecting mobile and base platforms. Link
Ri (i = 1, 2, . . . , 6) has the angle αi (i = 1, 2, . . . , 6). The relationship between the angles
in waterbomb-base origami is α1 = α2 = α4 = α5; meanwhile, α3 = α6.

The initial shape of waterbomb-base origami can be a square (bd = de) or a rectangular
(bd < de), depending on the intended use, application, and other parameters. Determining
it requires further discussion.

2.2. Parallel Mechanism

The parallel structure mechanism consists of a mobile platform, a fixed platform, three
legs, and a truss in the middle of the mechanism. Meanwhile, the legs are represented by
the spherical kinematic chain involved in waterbomb-base origami, and then, the structure
has three spherical kinematic chains for the legs [7]. The truss consists of a prismatic
connector hinge and two offset universal hinges to connect to the mobile platform and
base platform. The truss component has supported the movement of the mobile platform
concerning the base platform.

Figure 2 shows the revolute pair Sij and the link Rij, where i (i = 1, 2, 3) is the number
of legs and j (i = 1, 2, . . . , 6) is the number of a revolute pair. P and B are the revolute
joints paired with the mobile and base platforms.
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Figure 2. Structure of parallel mechanism.

3. Kinematic of Structure Mechanism

In this section, the displacement analysis of the parallel mechanism is presented. This
parallel mechanism establishes global reference and local reference. Point Ob–XYZ is
established as the global reference frame at the base platform. The X-axis and the Y-axis
are perpendicular and parallel to the axis of the revolute hinge with the center point B1,
respectively. At the same time, the Z-axis is normal to the base following the right-hand
rule [7]. In addition, the mobile platform has a point Op-XYZ as the midpoint, and the legs
and the truss component have the local reference frame. Table 1 explains the procedure of
the DH Convention for knowing the forward kinematics [10].

The table presents the DH parameter determined by four transformation parame-
ters [10] from the link and joint parameters [11]. Link parameters are the length of the link
(ai) and the angle of a twist of a link (αi); meanwhile, joint parameters as the offset of link
(di) and joint angle (θi) represent the relative positions of the following links [11].
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Table 1. Table of Procedure based on DH Convention.

Step 1 Determining and labeling of the joint axis Z0, . . . , Zn−1.

Step 2
Determine the base frame. Set the origin on Z0-axis. X0-axis and Y0-axis are chosen
conveniently, according to the right-hand rule frame.
For i = 1, . . . , n − 1

Step 3
The origin is Oi, where the common is normal to Zi and intersects between Zi−1 and
Zi. If Zi intersects with Zi−1, then the Oi is located at that intersection, or if Zi and
Zi−1 are parallel, the origin Oi is located in any convenient position along Zi.

Step 4 Determine the Xi from the origin Oi along the common normal between Zi−1 and Zi,
or if Zi−1 and Zi intersects, the direction normal to the Zi−1 − Zi plane.

Step 5 Determine Yi to complete the frame according to the right-hand rule.

Step 6
Determine the end-effector frame On − XnYnZn. Define the origin On along Zn,
preferably at the center of the end-effector, and set Xn and Yn following the right-hand
rule.

Step 7 Create a table of DH parameters.

Step 8 Substituting the DH parameters into the equation to obtain the form of the
homogeneous transformation matrices.

Step 9 The product result from step 8 is then given the position and orientation of the
end-effector with respect base coordinate frame.

In Ref. [10],

• ai = distance from the intersection of the xi, and zi−1-axis to point Oi are measured
along xi;

• αi = angle from zi−1 to zi is measured about xi.
• di = distance from Oi−1 to the intersection of the xi and zi−1-axis are measured along

zi−1. If joint i is prismatic, di is variable.
• θi = angle from xi−1 to xi, and is measured about zi−1. If joint i is revolute, θi i

is variable.

3.1. Leg

In Ref. [3], the waterbomb chain is related to a close chain, and the last revolute joint
pairs with the first revolute joint. Therefore, waterbomb chain does not have an end effector.
In this regard, evaluating the close loop equation is necessary, rather than considering the
end-effector [3].

3.2. Truss Parallel Mechanism

The truss component section consists of a prismatic hinge connector, and two offset
universal hinges connect to the mobile platform and the base platform. Figure 2 shows
the detail of the truss component. Point O6 and point O1 are the center of the hinge axe
connected to the mobile platform and the base platform, respectively. Point O2 and point
O5 are the centers of the two universal hinge axes. At the same time, point O5 and point O4
are directly connected to the prismatic hinge [12]. l represents the prismatic hinge length,
the distance between the center point O3 and point O4. Each hinge axe variable has the
offset distance between the center of the local coordinate hinge axe. The distance between
point Ob and point Op represents the height of the mechanism (h).

Table 1 shows the procedure of the DH convention. As shown in Figure 3, the axis of
each joint is already available, which corresponds from step 1 to step 7. Table 2 shows the
Denavit–Hartenberg (DH) parameters [13] of the truss component for each link.
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Table 2. Denavit–Hartenberg (DH) parameter of the truss component.

Link i ai αi di θi

1 0 90 d1 90 + θ1
2 a2 90 0 90 + θ2
3 0 90 d3 90
4 0 90 d4 θ4
5 a5 90 0 90 + θ5
6 0 90 0 90

According to step 8 in Table 1, substituting Equation (3) obtains the form of the
homogeneous transformation matrices.

Ti−1
i = TRz(θ).Tz(d).TRx(α).Tx(a) (2)

Ti−1
i =


cθ −sθ.cα sθ.sα a.cθ
sθ cθ.cα −cθ.sα a.sθ
0 sα cα d
0 0 0 1

 (3)

T6
0 =

6

∏
i=1

Ti−1
i (4)

T6
0 = T1

0 .T2
1 .T3

2 .T4
3 .T5

4 .T6
5 (5)

Equation (5) gives the position and orientation of the mobile platform with respect
base platform, as shown in Figure 4.
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Figure 4. Schematic of the parallel mechanism.

4. Motion Characteristics of a Structure Mechanism

In this structure, the truss component is active, and the legs are passive. Therefore, the
active component moves as the structure drives, while the passive component limits the
driven movement.

4.1. Rotation around X-axis

Figure 5 shows the rotation around the X-axis of the global coordinate frame in the
base platform. The rotation happens due to the rotation of the Z1-axis. The rotation of the
Z6-axis determines the orientation of the end effector. The revolute hinge rotates clockwise
or counterclockwise. Activating the prismatic hinge adjusts the radius of the structure’s
rotation. The minimum and maximum radii are the prismatic hinge’s minimum and
maximum strokes, respectively.
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4.2. Rotation around Y-axis

Figure 6 shows the rotation around the Y-axis of the global coordinate frame in the
base platform. The rotation happens due to the rotation of the Z2-axis. The rotation of the
Z5-axis determines the orientation of the end effector. The revolute hinge rotates clockwise
or counterclockwise. Activating the prismatic hinge adjusts the radius of the structure’s
rotation. The minimum and maximum radii are the prismatic hinge’s minimum and
maximum strokes, respectively.
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4.3. Translation along X-axis

Figure 7 shows the translation along the X-axis of the global coordinate frame in the
base platform. The translation movement activates the combination of two rotations and
a prismatic hinge. Meanwhile, the rotations occur on the Z2-axis and the Z5-axis. The
translational moving away depends on the stroke of a prismatic hinge. Furthermore, the
angle degree of the Z2-axis is the same as with the Z5-axis in the opposite direction. Thus,
the rotation on the revolute hinge can rotate clockwise or counter-clockwise.
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4.4. Translation along Y-axis

Figure 8 shows the translation along the Y-axis of the global coordinate frame in the
base platform. The translation movement activates the combination of two rotations and
a prismatic hinge. Meanwhile, the rotation happens on the Z1-axis and the Z6-axis. The
translational moving away depends on the stroke of a prismatic hinge. Moreover, the angle
degree of the Z1-axis is the same as with the Z6-axis in the opposite direction. Thus, the
revolute hinge rotates clockwise or counterclockwise.
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4.5. Translation along Z-axis

Figure 9 shows the translation along the Z-axis of the global coordinate frame in the
base platform. The translation movement only activates a prismatic hinge. The high of the
structure’s parallel mechanism depends on the stroke of the prismatic joint.
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4.6. Rotation with Tilt Movement

As shown in Figure 10, there is a combination of the structure movement parallel
mechanism. The mechanism shows a tilt with moving around. All motors can be active
and need control, depending on the requirements.
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