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Abstract: With inadequate water purification and sewage disposal systems, cholera poses a significant
health threat in developing nations. Vibrio cholerae (V. cholerae) is one of the main microscopic
organisms associated with cholera illness. If cholera is not treated, renal failure, shock, hypokalemia,
and pulmonary edema can occur, resulting in death in a matter of hours. The machinery of bacterial
virulence factors is what causes this disease. Among the various V. cholerae strains, V. cholerae O1 is the
most prevalent and pathogenic strain. The total genome succession of V. cholerae unravels the presence
of different genes and uncharacterized proteins whose capabilities are not yet perceived. Therefore,
it is essential to comprehend V. cholerae by analyzing the structure and annotating the function of
uncharacterized proteins. The NCBI sequence of uncharacterized V. cholerae O1 EET91795.1 proteins
was annotated for this study. The domain family, protein solubility, ligand binding sites, and other
parameters were all determined using a variety of databases and computational tools. The protein’s
ligand-binding sites were found, and its three-dimensional structure was modeled. According to
the analysis, the hotdog family protein may play metabolic roles like thioester hydrolysis in the
metabolism of fatty acids and the breakdown of two products such as phenylacetic acid and the
pollutant 4-chlorobenzoate. The structural prediction of this protein and detection of binding sites
suggested a potential target to uncover promising inhibitors against the protein to treat infection
caused by the target strain.
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1. Introduction

V. cholerae is a Gram-negative, facultatively anaerobic, highly mobile bacteria with
an arch or comma-shaped with a single polar flagellum. Gammaproteobacteria secrete
enterotoxin, which induces severe diarrhea known as cholera [1]. V. cholerae is primarily
found in uncooked foods and polluted water and is transmitted by the fecal-oral route.
An enzymatically active factor that raises cyclic adenosine 5-monophosphate (cAMP)
production is secreted when the toxin binds to a specific receptor, monosialosyl ganglioside
GM1, in the intestinal epithelial cells of the plasma membrane. Due to the cell’s high
cAMP levels, the intestinal lumen will overflow with electrolytes and water [2,3]. At an
ever-increasing rate, structural genomics initiatives produce many uncharacterized protein
structures. However, this enormous structural storage is only helpful with functional
annotation for biologists interested in particular molecular systems [4].
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We implement bioinformatic tools for the functional annotation for the EET91795.1
protein of V. cholerae, the causative agent of cholera, particularly in Southeast Asia [5].
This uncharacterized protein could be helpful as a pharmacological target and marker if
annotated. According to the findings of various bioinformatics databases and studies, these
proteins play a significant part in the pathogenesis of V. cholerae.

2. Materials and Methods
2.1. Protein Sequence Retrieval

The protein sequence was retrieved from the NCBI-protein database [6] with the
accession number of EET91795 (version: EET91795.1).

2.2. Physicochemical Characterization

The amino acid sequence composition, the instability index, the aliphatic index, the
GRAVY (the measurement of hydrophobicity or hydrophilicity of a protein), extinction
coefficients, and the theoretical isoelectric point (pI) of the EET91795 protein were measured
by the ExPaSy’s ProtParam program [7,8].

2.3. Functional Annotation Prediction

The NCBI platform’s CD search tool was applied to anticipate the conserved do-
main in the protein EET91795.1. Protein motif determination was implemented using the
ScanProsite tool [9,10].

2.4. Subcellular Location Identification

The protein’s subcellular location was documented using the PSORTb v.3.0.3, SOSUI
assessment tool, PSLpred server, HMMTOP v.2.0, and TMHMM server v.2.0 [11–13].

2.5. Secondary Structural Assessment

The SOPMA server exploited the secondary structural elements’ prediction fol-
lowing the default parameters of the protein EET91795.1 present in V. cholerae. More-
over, the PSIPRED v.4.0 tool was used to predict the secondary structure and the
disordered areas [14].

2.6. Tertiary Structure Modeling and Validation

The three-dimensional structure of the protein was modeled by utilizing the Swiss-
Model server. The anticipated tertiary structure obtained from the Swiss-Model server was
subjected to structural quality evaluation experiments. The PROCHECK of the SAVES v.6.0
program was performed for Ramachandran plot calculation [15].

2.7. Active Site Determination

The CASTp v.3.0 server was used to predict the active sites of the modeled protein [16].

3. Results and Discussion
3.1. Protein Sequence Retrieval

Protein sequencing identifies a protein or peptide’s amino-acid sequence, either as a
whole or a segment. The NCBI Protein data bank is a big store of sequences from multiple
sources, including GenBank, RefSeq SwissProt, PDB, etc. The protein obtained from the
NCBI database with the accession number EET91795 (version: EET91795.1) was present in
the locus EET91795 containing 161 amino acids (aa).

3.2. Physicochemical Characterization

By examining the properties of each amino acid in a protein, we can understand how
proteins’ physical and chemical properties are defined [17]. The ProtParam program on the
ExPASy server was used to determine the physicochemical characteristics of the protein
(EET91795.1). The protein consists of 161 amino acids, where Val (17) represented the
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amino acid of the greatest quantity, followed by Ala (14), Arg (7), Asn (9), Asp (3), Cys
(3), Gln (6), Glu (10), Gly (10), His (7), Ile (12), Leu (13), Lys (5), Met (5), Phe (4), Pro (6),
Ser (13), Thr (12), Trp (2), and Tyr (3). The time it takes for the radiolabeled target protein
concentration to decrease by 50% from the level at the beginning of the chase is known
as the protein half-life. The protein (EET91795.1) V. Cholerae has an estimated half-life of
about 30 h (mammalian reticulocytes, in vitro), >20 h (yeast, in vivo), and >10 h (Escherichia
coli, in vivo). The calculated isoelectric point (pI), molecular weight (MW), and the number
of total atoms were 6.64, 17,568.20 Dalton, and 2476, respectively.

3.3. Functional Annotation Prediction

The CD search tool of NCBI predicted a conserved domain as a hot-dog super-
family protein (accession: cl00509) of the protein. The structure of E. coli’s FabA (beta-
hydroxydecanoyl-acyl carrier protein (ACP)-dehydratase) and Pseudomonas’ 4HBT (4-
hydroxy benzoyl-CoA thioesterase) both contained the hot-dog fold. Various other in-
consequential proteins additionally share the hot dog-fold. The metabolic functions of
these proteins include the thioester hydrolysis of fatty acids, degradation of phenylacetic
acid, and the environmental pollutant 4-chlorobenzoate, among other related but distinct
catalytic activities. FapR is a member of this superfamily involved in the transcriptional reg-
ulation of fatty acid biosynthesis. Moreover, the ScanProsite tool predicts four pattern sites
of the protein EET91795.1. These are the Protein kinase C phosphorylation site (accession
no.PS00005), N-glycosylation site (accession no. PS00001), Casein kinase II phosphorylation
site (accession: PS00006), and N-myristoylation site (accession: PS00008).

3.4. Subcellular Location Determination

The PSORTb (v.3.0.2), SOSUIGramN, and PSLpred tools were used for subcellular
location analysis of the protein (EET91795.1). The tools predicted the subcellular location of
the protein as a cytoplasmic protein. The HMMTOP (v.2.0) and TMHMM (v.2.0) programs
anticipated that there were no transmembrane helices in the protein (EET91795.1) and
highlighted the cytoplasmic location of the protein present in V. cholerae (Table 1).

Table 1. Subcellular localization assessment.

Analysis Results

PSORTb (v.3.0.2) Cytoplasmic
SOSUIGramN Cytoplasmic
PSLpred Cytoplasmic
HMMTOP (v.2.0) No transmembrane helices present
TMHMM (v.2.0) No transmembrane helices present

3.5. Secondary Structure Inquiry

Protein function and structure are vigorously connected. The secondary structural
elements, e.g., helix, coil, sheet, and turn, have an excellent relationship with protein
function, construction, and engagement. The SOPMA program predicted the secondary-
structural component of the protein (EET91795.1) where the alpha-helix (Hh), extended-
strand (Ee), and random-coils (Cc) were 49 (30.43%), 44 (27.33%), 68 (42.24%), respectively.
The PSIPRED v.4.0 tool predicted the sequence plot and secondary structure. The sequence
plot from the two-dimensional structure of the protein indicates that most of the protein
is cytoplasmic.

3.6. Tertiary-Structure Modeling and Validation

The Swiss-Model server was utilized for tertiary-structure prediction of the protein
EET91795.1. The Swiss-Model server predicted the tertiary structure of the protein based
on the most favored template (4qdb.1.A). This template has a the Global Model Quality
Estimation (GMQE) value, QMEANDisCo Global value, and sequence identity score of
0.72, 0.80, and 46.48%, respectively. The Ramachandran plot analysis by PROCHECK was
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applied for the structural assessment of the modeled tertiary structure obtained from the
Swiss-Model server [18–21].

In the case of the anticipated tertiary structure by the Swiss Model, the assessment
experiment executed by the Ramachandran Map (PROCHECK) indicated that 93% of the
total residues (227) were found in the core, 7.0% of residues were found in the additional
allowed regions, and there was no residue found in the abundantly authorized parts and
the disallowed areas [22,23]. The number of non-glycine and non-proline residues was 244,
which was 100%, and the end residues were four; the glycine and proline residues were 20
and 8, respectively, among the 276 total residues (Figure 1).
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Figure 1. (a) Structure of EET91795.1 protein predicted by Swiss Model, and (b) the Ramachandran
plot statistics of the modeled three-dimensional structure validated by the PROCHECK program. The
3D structure of the protein was anticipated using the Swiss-Model server (https://swissmodel.expasy.
org/, accessed on 1 November 2022). Triangles represent the number of glycine residues. Residues
are in the most favorable regions in the A and B areas. Moreover, the residues in the additional
allowed regions are found in the a and b areas. The red color represents the most favored regions,
whereas the yellow color denotes the additional allowed regions.

3.7. Active Site Determination

The CASTp version 3.0 program predicted 35 different active sites of the modeled
protein. This server recognized all surface pockets, internal cavities, and transversal
channels in the protein structure and described all atoms involved in their formation. It
also calculated their exact size and area and the size of the mouth openings, if any. These
dimensions were calculated analytically using a solvent-accessible surface model (Richards
surface) and a molecular surface model (Connolly surface). CASTp could be utilized to
investigate surface properties and protein operational zones. CASTp also helped study a
protein’s surface properties and functional parts. CASTp provided a graphical, versatile,
dynamic user interface and user-provided constructs for rapid measurements. The top
active sites of the modeled protein were identified between the area of 256.436 and the
volume of 94.190.

4. Conclusions

In this study, the protein EET91795.1 of V. Cholerae was retrieved from the NCBI
database, and we determined their physicochemical properties and identified domains and
families using various bioinformatics tools and databases. This protein is hydrophobic
and localized in the cytoplasm of the cell. In addition, it is a hot-dog superfamily protein
that may act in metabolic roles. This protein has a coenzyme binding site and four more

https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
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enzymatic pattern sites. The secondary structure verified that alpha-helix, random spiral,
extended strand, and beta-turns were uppermost in most sequences. The Swiss-Model
server was used to evaluate tertiary systems, and PROCHECK for Ramachandran Map
Analysis showed that the protein residues in most favored regions were 93%. The CASTp
program predicted 35 distinct functional areas of this modeled protein. The findings of this
study may contribute to the modulation of new target identification and drug discovery
for the control of cholera, thereby reducing this deadly global epidemic.
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