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Abstract: The chemical reaction of O-chloroacetylthymol with the sodium salt of tartaric acid in the
presence of dimethylformamide and hexamethylphosphoramide (HMPA) as solvents is described
in this article, along with the findings of physico-chemical analysis to confirm the structure of the
resulting chemical compounds. Hexamethylphosphoramide was found to be present in the chemical
reactions which were proven to have the greatest yields (HMPA).

Keywords: tymole; chloroacetylchloride; chloroacetylation; sodium tartrate; nucleophilic substitution;
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1. Introduction

Studying the existing literature led us to the discovery that carboxylic acids may quan-
titatively react with halogenated derivatives of saturated hydrocarbons (alkyl bromides
or iodides) in HMPA at room temperature to create esters [1]. Now, we would like to
share the findings of additional research on ethyl iodide extension with hindering acid
salts, using dehydrated K2CO3 as a base to stop some acids from decarboxylating by using
dihalogen compounds with one carbon atom (geminal dihalides) as the alkylating agent
and quantitative O-alkylation of phenoxide ions.

The ethyl esters were produced in a significant amount through a chemical reaction
involving mesitoic acid, triethylacetic acid, and caustic soda (aqueous 25% NaOH) in hex-
amethylphosphoramide (HMPA). On each occasion, less than 5 min of room temperature
alkylation time were needed. This chemical reaction takes place over a brief amount of
time, is a straightforward procedure, and has a high quantitative yield, which makes it a
useful technique for creating complicated ethyl alcohol esters [2].

Alternative solvent systems, such dimethyl sulfoxide and dimethylformamide, allow
for a little longer delay in the production of the products. After 5 min in dimethyl sulfoxide,
the reaction of sodium thiethylacetate with ethyl iodide was only two-thirds complete, and
it was only approximately one-third complete after.

Caustic soda causes a parallel reaction to occur in the decarboxylation process, making
it essential to utilize dehydrated K2CO3 as a base for the production of esters of particular
carboxylic acids. Just a 36% yield of the desired diethyl ether of malonic acid was produced
when a solution of malonic acid, caustic soda (aqueous 25% NaOH), and HMPA was
expected to be combined for 15 min at room temperature. It has been demonstrated that
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malonic acid undergoes decarboxylation when Na2CO3 is present in the NaOH solution.
When triphenylacetic acid is processed with caustic soda in HMPA, some decarboxylation
takes place as well. A substantially higher yield (91%) of diethyl malonate was obtained
after stirring a combination of malonic acid, powdered dehydrated potassium carbonate,
ethyl iodide, and dry HMPA for 24 h at room temperature. Triphenylacetic acid ethyl ester
was produced with a 100% yield using the same process as was utilized for triphenylacetic
acid [3].

At normal temperature, dibromomethane and the sodium salts of 2-ethylbutanoic acid
and benzoic acid reacted to produce 100% and 86% yields of diesters of 2-ethylbutanoic acid
and benzoic acid, respectively. A longer reaction time was needed for the sodium salt of
benzoic acid than for the sodium salt of 2-ethylbutanoic acid (24 h). This is probable because
HMPA does not completely dissolve sodium salt of benzoic acid, unlike sodium salt of
2-ethylbutanoic acid. Diesters such as 1 and 2 are often made by reacting paraformaldehyde
or polyoxymethylene with an acid anhydride when a mineral or Lewis acid is present [4,5].
High yields are produced by the alternate procedure of the sodium salt of carboxylic
acids reacting chemically with the disubstituted bromine derivatives of methane [6]. Even
at higher temperatures, sodium carboxylates failed to produce tri- or tetrasubstituted
compounds when reacting with a trisubstituted brominated derivative of methane or a
tetrasubstituted brominated derivative of methane.

Phenols were quantitatively converted to ethers through chemical reaction between
their sodium salts and the alkyl iodides in HMPA at room temperature. Methyl ester
and methyl podocarpicetate were quantitatively produced by the chemical reaction of
podocarpic acid with caustic soda and iodine methane HMPA. In less than 2.5 h, the
sodium salt of phenol interacted with isopropyl iodide to produce isopropyl phenyl ether
with a yield of 100%. The reaction time was much shorter than that recorded for the
identical chemical reaction when tetrahydrofuran (THF) was used as the solvent [7]. In
the case of THF, it is known from the literature that 22% production of isopropyl phenyl
ether is yielded after 24 h at 23◦ and 80% after 24 h at 80◦. The preparation of isopropyl
cyclohexyl ether was attempted. However, when cyclohexanol, NaH, isopropyl iodide, and
HMPA combine at room temperature a significant quantity of propene forms instead of the
anticipated ester. This outcome is not unexpected, as cyclohexanol’s alkoxide is a potent
base with greater basicity than phenoxide [8].

2. Experimental

Thin layer chromatography (TLC) was used on Silufol-254 plates to determine the
composition of the reaction products. TLC was used to examine the reaction’s progression
and the purity of the chemical compounds created throughout the procedure in the mobile
phase system of petroleum ether and ethyl ether of acetic acid (7:3). For the TLC stationary
phase, silica gel-coated aluminum plates (silica gel 60 F254) bought from MERCK, India
were utilized. The distribution of chemicals on TLC plates was visualized using UV light.
The reaction mixture was cleaned using column chromatography, and the yield of the
chemical reaction that followed isolation was calculated. The reaction mixture was verified
by TLC using petroleum ether and ethyl acetate (7:3) as the mobile phase after separation
by column chromatography. The liquid was then dumped into ice cold water when the
reaction was finished. The precipitated solid substance was filtered and dried. Petroleum
ether and ethyl ester of acetic acid were used in column chromatography to clean the crude
product. Using the KBr pellet technique, the products’ FT-IR spectra were acquired on
a Carl Sies (Germany) Specord IR-71 spectrophotometer. TMS was used as the internal
standard for the 1H NMR recordings, and chemical shift values were expressed in ppm
scale using a Bruker (Germany) 400 MHz NMR apparatus. The uncorrected melting points
of the synthesized compounds were measured using the open capillary technique and an
Mvtec melting point apparatus [9,10].

Chloroacetylation of tymole. 1.15 g (0.01 mol) of thymol was dissolved in 30 mL of
chloroform, and 1.13 g (0.01 mol) of chloroacetyl chloride was put in a tube designed
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to vent hydrogen chloride in a reflux refrigerator and heated for 16 h. The reaction was
continued until there was no more development of hydrogen chloride. Using litmus paper,
the response was monitored throughout. When the release of hydrogen chloride was
stopped, the reaction mixture was cooled, put into water (50 mL), and then extracted twice
with 40 mL of ethyl ether. Two 10 mL volumes of water were used to wash the combined
ether extract then dried with dehydrated sodium sulfate, with 2.15 g of liquid produced
by the process of low-pressure evaporation. The actual yield of O-chloroacetyl tymole%
according to TLC analysis of the liquid was 95. The infrared spectra of the TLC-purified
product and that of the genuine sample were exactly the same.

Preparation of ester of tartaric acid from the reaction of sodium salt of tartaric acid with
o-chloroacetylthymol. Additional experiments involved boiling the reaction mixture, which
was prepared as follows. First, 1.72 g (0.01 mol) of sodium tartrate, 2.26 g (0.01 mol)
of O-chloroacetyl tymole, and 20 mL of dimethylformamide were added to a 100 mL
round-bottomed flask connected to the reverse refrigerator. The reaction mixture was then
boiled for 5 h. The reaction products were separated by extraction when the discharge
of hydrogen chloride stopped. This was accomplished by extracting the reaction mixture
using a water:ether system (50:40). Two 10 mL amounts of water were added to the
combined ether extract to wash it. It was then dried with dehydrated sodium sulfate
and the liquid was evaporated under reduced pressure to yield 2.24 g. The real yield
of 2-izoprophyl-5-methylphenhylcarboxymethylen tartrate was 66%, according to a TLC
analysis of the liquid. The TLC-purified product’s infrared spectrum matched the spectrum
of an actual sample exactly.

Reaction of O-chloroacetyltymole with sodium tartrate. First, 1.72 g of sodium tartrate was
added to a solution of 2.26 g (0.001 mol) of O-chloroacetyl tymole in 30 mL of HMPA. The
solution was agitated for 24 h between 23 and 25 degrees. Afterwards, the solution was
placed into 100 mL of water and two parts of 75 mL of ether were used to extract it. In order
to obtain 3.4 g of liquid, the combined ether extract was evaporated under reduced pressure,
dried with dehydrated sodium sulfate, and washed twice with 25 mL of water each time.
The 2-izoprophyl-5-methylphenhylcarboxymethylen tartrate was the sole substance in this
liquid according to a TLC analysis, and was produced in full amounts (100%) in this liquid.

3. Reaction Results and Discussion of Results

The largest degree of generality for the O-chloroacetylation reaction is when it is
carried out in a chloroform solution. In a chloroform solution, the chloroacetylation process
of thymol yields 95% O-chloroacetyl thymol.
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When thymol and chloroacetyl chloride react, the oxygen molecule gains a partial
negative charge as a result of the sorbed electron density from the chloroacetyl chloride
molecule. In order to create complex I, the carbon atom interacts with the double electrons
of the hydroxyl group in the tymole molecule and gains a partial positive charge as a result
of the action of the electrons of the chlorine and oxygen atoms. A valence bond between
oxygen and carbon is created during the reaction, creating complex II, from which the
product of the reaction with hydrogen chloride is separated.
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The O-acylation scheme suggested for this chemical reaction similarly connects with
the O-acylation events that occur when isomeric phenols react with chloroacetyl chloride in
chloroform, where both O-acylation processes take place through the same mechanism. As
these processes occur with the creation of ions, it is known that polar solvents are best for
alkylation and acylation reactions of aromatic compounds with halide alkyls or acyl halides
in the presence of aprotic catalysts. Glycol, wine, and sodium salts of citric acids were
subjected to nucleophilic substitution reactions with O-chloroacetyl tymole. The following
chemical strategy results in tartaric acid ester.
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Because the carboxylate ion is a poor nucleophile and does not form an ester with
halogenated alkanes, the esterification process conducted here does not occur in protic
solvents. When HMPA solution is present during the chemical interaction of the acid salt
(RCOOMe) with halogen derivatives (alkyl halide), the esterification process proceeds with
high yield [11,12]. Together with changes in their electromagnetic, nucleophiles’ relative
“activity” (ability to react) shifts as follows: CF3COO- >> CH3COO-. The order of the
halogen ions is different, however, being based on their electromagnetism.

Dipole aprotic solvents are weakly soluble and do not react in DMF, dimethylacetamide
(DMATS), DMSO, HMPA, or acetonitrile if their metal salts include solid anines such as
KF, LiF, KCN, NaCN, RCOONa, etc. In order to solve this issue, tetraalkyl ammonium
salts were utilized. Binary combinations of solvents containing a 5–10% proton solvent,
such as DMSO-CH3OH, DMSO-H2O, or HMPA-H2O, are examples of such salts. It must
be said, however, that the only factor determining a sharp increase in the rate of reaction
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in dipole solvents with the covalent bond substrate R:A in the anion of Nu− namely, the
SN2 reaction, is not only the solvation of nucleophilic reagent Nu−. Because the transition
state of such a reaction is less polar, though more polar than the starting reagents, dipole
aprotic solvents more effectively dissolve the transition state than proton solvents. This
provides a reduction in the activation energy ∆G. Effective solubility of the transition state
due to low solvation ability of anions and formation of ion–dipole interaction in dipole
aprotic solvents leads to a sharp increase in the rate of SN2 reactions. Good results were
obtained using the dipolar aprotic solvents HMPA, N-methylpyrrolidone-2 or DMF, and
DMA, which are very cheap and easy to find. In these experiments, the highest yield of
ester enrichment was 66%.

As is well known, bipolar aprotic solvents such as HMPA, DMSO, DMF, THF, acetone,
dioxane facilitate the reaction of bimolecular nucleophilic substitution with alkyl halides
until the cation is soluble in the carbonic acid salt. In connection with the reaction equa-
tion involving dimethylformamide, the sodium salts of oxyacids with the mechanism of
O-chloracetyl tymole can be proposed as follows.
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This scheme can be applied to other analog reactions as well. The reaction activity of
anions in an environment of dipole aprotic solvents depends on two quantities: the size of
the ion, and the unit of charge, that is, the hardness of the anion. The ion–dipole effect in
dipole aprotic solvents is observed in F-, -OR, -OH, -OC6H5, -OOCR, and Cl- in small solid
anions, with a sharp increase in the rate of SN2 reactions.

The energy of the massive bromine and iodine anions in the reaction mixture is
lower than the energy of the tiny chlorine anion, as dimethylformamide does not store
halogen atoms. Consequently, compared to the bromine and iodine anions, the chlorine
anion has greater nucleophilicity. Moreover, distinct ranges of the reagents’ nucleophilic
characteristics may be obtained by comparing the relative reaction rates of the substrate
with various nucleophiles during the reaction.
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The structure of the synthesized substances was confirmed using IR- and NMR-
spectra [13,14].

The IR spectra of O-chloroacetyl thymol are presented in Figure 1 and show the fol-
lowing absorption values: (-CO-) = 1768–1751 cm−1, ν(-C=C-) = 1597–1505 cm−1 (aro-
matic ring), δ(-CH-) = 832–812 cm−1 (1,4-substituted), ν(CH) = 3434 cm−1 (aromatic
ring), νs (-CH2-) = 3002 cm−1 and νas (-CH2-) = 2953 cm−1, δ (-CH2-) = 1406 cm−1 and
ν(C-Cl) = 737 cm−1. Data obtained from the physico-chemical analysis (IR spectra) of 2-isopropyl-
5-methylphenylcarboxymethylene tartrate, a reaction product of O-chloroacetylthymol:
ν(-COO-) = 1197–1097 cm−1,ν(-C=C-) = 1663, 1512 cm−1 (aromatic ring), δ (CH-) = 804–851 cm−1

(1,4-substituted), ν(C-Cl) = 420, 443 cm−1, νs (-CH2-) = 2837, 2856 cm−1 and νas (-CH2-) = 2908,
2960 cm−1, δ (-CH2-) = 1426, 1510 cm−1.
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Figure 1. Fourier transform infrared spectrum of 2-izoprophyl-5-methylphenhylcarboxymethylen
tartrate.

The 1H NMR (400 MHz, CDCl3)spectra of O-chloroacetyl thymol are presented in
Figure 2 and characterize the absorption lines of the hydrogen atoms in the molecule as
follows [15]: δ 6.7 (m, 1H, ArH), 7.07 (d, J = 8.5 Hz, 1H, ArH), 7.25 (m, 1H, ArH), 12.23
(s, 1H, -OH). 13C-NMR (400 MHz, CDCl3): δ 163.8, 153.0, 136.1, 131.7, 126.2, 121.9, 116.0,
77.5, 26.7, 22.8.
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