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Abstract: Fuel Cells (FCs) constitute an enabling technology for the integration of renewable energies
and for the deployment of the next generation of power grids, the so-called Smart Grids/Microgrids.
These devices perform the process of converting hydrogen into electricity without emitting pollutant
emissions. Characteristic curves, mainly polarization curves, are a paramount resource to study the
performance of FCs and to determine accurate models that fit their behavior. This paper presents
the characterization of a commercial Polymer Electrolyte Membrane (PEM) FC consisting of 24 cells
in series with a nominal output of 500 W, used to supply electricity in a Smart Microgrid involving
renewable energies and hydrogen. The process evolution takes place under different laboratory
conditions, so voltage, current, and hydrogen flow are measured and plotted to build the polarization
curves. The equipment and components involved in the operation of the FC are described, as well
as their technical features. Namely, a metal-hydride bottle is used to store the hydrogen that feeds
the FC, an electronic programmable load establishes different charge conditions, and a precision
multimeter collects the measurements provided by a set of sensors physically coupled to the FC. The
characterization conducted in this research is envisioned to be used to build a digital twin of the
FC. The developed experimentation and achieved results are described. The obtained results show
a proper match between the experimental data and the curves reported in the literature and in the
FC datasheet.

Keywords: fuel cell; hydrogen; Smart Microgrids; polarization curve; sensors; renewable energies

1. Introduction

Hydrogen is an energy carrier expected to solve the long-term energy storage issue for
power grids based on renewable energy sources [1]. Even, the term “Hydrogen economy”
has been gaining strength in recent years [2]. In this context, the so-called Smart Grids are
intelligent power networks with enhanced capabilities in terms of performance and stability
due to the massive introduction of sensing, automation, and monitoring technologies [3].
Small-scale Smart Grids are known as Smart Microgrids which can be connected to the
main distributed grid or operate in a stand-alone model. Smart Grids and Smart Microgrids
integrating renewable energies can reduce greenhouse gases and help meet the incessantly
rising energy demand [4].

Decentralized generation and consumption are features of these modern grids, so a
lot of energy conversion equipment is required. For instance, electrolysers can be used
to generate hydrogen from local renewable energy sources, whereas Fuel Cells (FCs)
can be used to produce electricity from stored hydrogen in an environmentally friendly
system. In fact, FCs receive important research efforts, from constructive aspects [5] to
monitoring systems [6], passing through modeling of their behavior. In this latter regard,
existing literature reports a large number of papers about different models of FCs, including
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theoretical and empirical models centered on the whole FC, while others are focused on
different FC components (electrodes, membrane, etc.) [7].

In particular, the polarization curve is a useful tool to analyze the behavior of Polymer
Electrolyte Membrane (PEM) FCs [8–10]. Some examples are devoted to studying aged
PEM FCs [8], long-term operations [9], or diagnostic methods [10].

In an ongoing R&D project, a Smart Microgrid hybridizing photovoltaic generation
and hydrogen is being deployed. The goal of this project is to develop digital models of the
actors in such microgrids to replicate their behaviors, performances, and interactions. This
paper presents the characterization of a PEM FC used to supply electricity in the aforemen-
tioned Smart Microgrid. The characterization conducted in this research is envisioned to be
used to build a digital replica of the FC.

The structure of the rest of the paper is as follows: Section 2 deals with the mathemati-
cal modeling of FCs. Materials and methods are described in the third section. Section 4
reports the experimental setup and results. Finally, the main conclusions of the research
are addressed.

2. Mathematical Modeling of FC

A PEM FC is an electrochemical device that produces electricity from hydrogen and
oxygen. Besides the energy released as electricity, water and heat are also generated [11].
Figure 1 illustrates this process.
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The amount of energy produced in the electrochemical process that takes place in a
fuel cell can be calculated from changes in Gibbs free energy, that is, the difference between
the Gibbs free energy of products and reactants. Gibbs free energy represents the energy
available for external work and depends on the temperatures and pressures of the reactants.
If the electrochemical processes that take place in the cell were reversible, all Gibbs free
energy could be converted into electrical energy. Thus, the “reversible” voltage of a PEM
cell would be expressed as:
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where gf is the Gibbs free energy, R is the universal constant for ideal gases, PH2 is the
hydrogen partial pressure, PO2 is the oxygen partial pressure, PH2O is the water vapor
partial pressure, and ∆g of the change in the process gf at a standard working pressure
(1 bar), which in turn changes with the temperature of the FC (Tfc).

The expression (1) is the so-called Nernst voltage of a PEM FC. Applying standard
thermodynamic relationships with respect to entropy changes, Equation (1) can be writ-
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The model expressed in Equation (2) aims to reflect the theoretical performance of a
generic FC. Additionally, the cell voltage varies with electric load conditions. This is due to
electric losses, which can be classified as activation (Vact), ohmic (Vohm), and concentration
or diffusion losses (Vconc) [11]. Therefore, considering all the losses, the cell voltage can be
written as:

Vf c = E − Vact − Vohm − Vconc (3)

Substituting the terms associated with the stated losses, the output voltage of the FC
can be written as:

Vf c = E − RT
2αF

ln
(

i
i0

)
− (R0 − R1λm)i − me(n∗i) + b ∗ ln

(
PO2

a

)
(4)

where α, i0, R0, R1, m, n, b, and a are empirical parameters that take into account the different
polarization effects and are adjusted for a specific FC stack.

Several scientific works are focused on obtaining an extended model for different
stack types. In a practical case, the parameters included in each model must be adjusted
to fit the semi-empirical model to the real behavior of the stack [12]. Therefore, before
adjusting these parameters of the model to our particular case, it is convenient to verify
that the behavior of the FC under study corresponds to what the manufacturer provides in
its datasheet.

3. Materials and Methods

In this section, the involved devices are described, e.g., the FC and the instrumentation
equipment. Their most relevant features are given, as are their physical aspects.

3.1. H-500 FC Stack

The FC that was used for the development of this work is the H-500 model of the
manufacturer Horizon [13]. Figure 2 depicts the aspects of this model of the FC. The main
features of this device are summarized in Table 1. In addition, a control unit is required to
manage the operation of the FC.
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Table 1. FC main features.

Type of fuel cell PEM

Number of cells 24

Performance 14.4 V @35A

Rated power 500 W

Max stack temperature 65 ◦C

H2 Pressure 0.45–0.55 bar

H2 purity =99.995% dry H2

Flow rate at max output 6.5 L/min

3.2. Flow Meter Bronkhorst

To measure the hydrogen flow consumed by the FC, a flow meter from the manufac-
turer Bronkhorst [14] is mounted. This sensor is shown in Figure 3. The most relevant
characteristics of this device are listed in Table 2.
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Table 2. Flow meter characteristics.

Pressure 6 bar

Power supply 24 V DC (15–24 V DC)

Temperature 20 ◦C

Flow 5000 mLn/min

3.3. Current and Voltage Sensors

In order to sense the electrical magnitudes of the FC, two sensors are dedicated to
measuring the voltage and the current supplied. Namely, a voltage divider based on a
precision potentiometer is used to measure the voltage output. On the other hand, a current
sensor based on the Hall effect is chosen. In particular, the model LA 25-NP of the company
LEM is used [15]. Table 3 contains the signal ranges managed by this sensor.

Table 3. Current sensor signal ranges.

Current range ±25 A

Power supply ±15 V DC

Temperature −40 to 85 ◦C

Output current range ±25 mA
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3.4. Hydrogen Storage

To enable the operation of the FC, a hydrogen storage device is necessary. In the
present case, this issue has been solved through a metal-hydride bottle model HBond-
1500 L from the manufacturer Labtech [16]. It has a charging pressure of 15 bar and a
storage capacity of 1500 N liters. The appearance of this storage bottle is shown in Figure 4.
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3.5. Ancillary Components

A set of ancillary components is required to complete the experimental arrangement.
Specifically, electro-valves, pressure sensors, pressure regulators, and power supplies for
electronics. Furthermore, a programmable load and a precision multimeter have been
employed for the polarization process.

4. Experimental Setup and Results

The aforementioned equipment has been assembled in a laboratory to perform a set of
experiments and measurements. Figure 5 portrays the appearance of the system.
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The manufacturer of the fuel cell provides a series of theoretical polarization curves
on its data sheet. As previously said, the aim of this work is to experimentally obtain the
operating curves of the FC. The final purpose consists of obtaining a mathematical model
of such a system. The adjustment of the coefficients (parameters) of the chosen model will
be carried out with the set of data obtained for characterizing the FC.

Firstly, the polarization curve corresponding to the relationship between the voltage
and the current produced by the FC is given in Figure 6a. Regarding the power generated
by the FC with respect to the delivered current, Figure 6b shows the experimental data.
Figure 6c depicts the curve obtained for the relationship between the hydrogen fed to the
FC and the generated power.
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The trend of the curves corresponds with those reported both in the datasheet and in
FC-related literature. Hence, the behavior of the FC is adequate.

A noteworthy remark is that the curves provided by the manufacturer are illustrative
for all the cells of the same model and for determined operating conditions. We have
developed the described tests, taking into account the particular FC and the conditions of
pressure and temperature during such tests. These conditions are required for the further
adjustment of the parameters of the mathematical model.

5. Conclusions

This paper presents the experimental characterization of a PEM FC as a necessary
stage before its usage within a Smart Microgrid that integrates renewable energies and
hydrogen. The equipment used for characterizing the FC has been described, and the
achieved results have been expounded. The obtained results show a proper match between
the experimental data and the curves reported in the literature and in the datasheet.
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Future works deal with the adjustment of the parameters in the mathematical model of
the FC. Additionally, the integration of such FC in the Smart Microgrid will also be carried
out. Indeed, further characterizations will be performed aimed at detecting degradations
of the stack.
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