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Abstract: In this day and age, surrounded by innumerable forms of technology, the use of various
autonomous systems to recognize various ailments has tremendously benefited the medical industry.
An important medical practice is the visual evaluation and counting of white blood cells in micro-
scopic peripheral blood smears. Invaluable details regarding the patient’s health may be revealed,
such as the discovery of acute lymphatic leukaemia or other serious disorders. This study provides
a paradigm for detecting acute lymphoblastic leukemia from a microscopic vision of white blood
cells. Microscopic images must go through a thorough pre-processing phase before being classified.
In this study, WBCs are separated from blood smear images using morphological techniques, and
the segmented region is then searched for a set of textural, geometrical, and statistical properties.
Four different machine learning techniques are used to examine the performance of these algorithms:
random forest (RF), support vector machine (SVM), naive Bayes classifier (NB), and K nearest neigh-
bor (KNN). The SVM is effective in classifying and identifying the acute lymphoblastic cell that
produces leukemia malignancy, as can be observed after careful comparison. A single classifier is
virtually completely useless given the variety of blood smear pictures. As a result, we considered
using EMC-SVM to classify leukocytes. The suggested method successfully distinguishes white
blood cells from sample blood smear images, and accurately categorizes each segmented cell into the
relevant group.

Keywords: lymphoblastic; leukemia; segmentation; feature extraction; PCA; multiclass classifier;
machine learning; SVM

1. Introduction

A crucial task carried out by doctors is diagnosis, which involves assessing a dataset
to determine whether a disease is present. These data, which can include indications,
symptoms, photographs, and exams, are crucial to identifying disorders [1,2]. An incorrect
diagnosis brought on by an ineffective examination may result in the patient experiencing
side effects, since potentially inappropriate medications may be prescribed for the treatment
of a certain ailment. There are low-cost computing systems that analyze and interpret the
data, offering diagnostic aid to specialists at this important stage.

The three types of blood cells that make up the majority of the blood are red blood
cells, platelets, and white blood cells. All tissues receive oxygen from the heart through red
blood cells, which also expel carbon dioxide. Up to 50% of the entire blood volume is made
up of these cells. White blood cells (WBCs) play important roles in the immune system,
as well as being the body’s first line of defence against infection and disease. Therefore,
correctly classifying WBCs is crucial and is becoming increasingly required. WBCs can be
split into two categories based on the appearance of their cytoplasm [3].
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We can also identify platelets and RBCs and count the number of cells, determine their
sizes, and determine the typical cell percentages in human blood by processing microscopic
blood smear photographs [4]. The five subcategories of leukocytes are monocytes, lympho-
cytes, basophils, eosinophils, and neutrophils. Multi-class classification is considered the
best approach for diagnosing and accurately detecting leukocytes and their underlying
sub-class, as it can be utilized to quickly identify each category [5].

Different picture characteristics, such as edges, geometric, statistical, and statistical
features, as well as the histogram of gradients (HOG), are used to categorize images. Pre-
processing, which includes noise reduction, contrast control, and image sharpening, is
the initial step in the classification of images. Various methods are employed to improve
microscopic pictures. The improved image is then further processed to separate the WBCs
using various segmentation methods [6–8].

In several disciplines, including medical diagnostics systems, important patterns for
prediction tasks have been extracted using machine learning-based networks [9]. If the
illness is identified early and treated in the interim, death rates can be reduced. This
makes things desperate and it takes a long time for the hematologist to physically find the
sickness. To overcome these issues, computer-aided techniques for leukemia detection are
very effective, quick, and accurate [10]. However, the computer-aided approach still faces
a number of issues, obstacles, and research gaps, such as the accuracy of the detection of
leukemia cancer and its types (acute myelogenous leukemia, acute lymphoblastic leukemia,
and multiple myeloma), as well as their further segmentation and categorization. The goal
of this study is to determine the leukemia subtype and detect the disease.

2. Literature Review

This section provides a synopsis of the most cutting-edge methods currently available
for classifying and segmenting leukocytes. The increasing advancement of methodologies
has allowed for us to investigate the relevance of leukocyte segmentation and categorization,
which play an active part in medical haematology to diagnose various hepatic disorders.

In [11,12], a number of mathematical operations and techniques were developed to re-
duce noise and enhance image clarity. Then, procedures for gamma correction and contrast
enhancement were applied. The accuracy of an account was extensively segmented. Leuko-
cyte localization and f-area extraction were the first two steps in the two-step technique for
picture segmentation. Each technique has three further steps. Localization, thresholding,
three-phase filtration, identifying neighboring cells, and cell extraction are examples of
sub-steps. The cytoplasm, nucleus, and localization of the nucleus areas were also extracted.

Thresholding and mathematical morphology [13] were used to section off the nucleus
of the cell. Morphology is a mathematical technique that separates white blood cells
(WBCs), red blood cells (RBCs), and platelets from one another. This [14] technique
employs addition and subtraction to blood smear images. The image was divided into
background and foreground using threshold segmentation, and the best threshold value
for WBC segmentation was then chosen. For the classification of leukocytes, geometric
characteristics were retrieved and an SVM classifier was applied [15].

Several strategies have been presented to address the issue of overlapping blood cells.
These algorithms divide cells either by eroding and growing regions that keep the shape or
combine concave spots with dividing lines [16,17] As part of this study, we also propose an
algorithm for cell separation that uses information about the blood cell’s shape to construct
a conical curve that separates the overlapping sections [18].

3. Proposed Framework

The suggested architecture involves a few steps from an input blood sample image,
which are applied to the final results. The input photos are first gathered. These pho-
tographs often come in a range of sizes and resolutions. They are useful for every type
of experiment and analysis due to their homogeneous size. For the distinct region of
interest, these photos are subsequently shrunk and color-filtered. It can be difficult to find
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attributes that are appropriate for the goal-mining algorithm. The Canny edge detector
and HOG feature descriptor are used to accomplish feature identification and describe the
images after a rigorous inspection of the images, taking our purpose into account. Principle
component analysis is used to decrease the feature dimensions. Random forest, naive
Bayes classifier, support vector machine, and logistic regression are used for classification.
Figure 1 describes each step of the proposed methodology. In the preprocessing phase,
various operations, such as resizing, noise removal, and contrast adjustment, are carried
out, and then features are extracted. After that, dimension reduction is applied for PCA,
and finally classification is carrried out using classifiers. At the final stage, a multiclass
classifier is used for classification.
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3.1. Dataset Description

The All-IDB1 [19] and own acquired photos from pathology were used to obtain
microscopic images of white blood cells for the suggested technique. There are 1208 photos
in this dataset. A total of 549 of these photos are benign, while 659 of them are malignant.
There are roughly 93,000 blood components. Lymphocytes are labeled in this dataset. There
are 5510 lymphoblasts among the components. Figure 2 describes the sample images from
the dataset under various different conditions. These images are used to extract the features
and obtain the final classification.

Eng. Proc. 2023, 37, 36 3 of 8 
 

 

3. Proposed Framework 
The suggested architecture involves a few steps from an input blood sample image, 

which are applied to the final results. The input photos are first gathered. These photo-
graphs often come in a range of sizes and resolutions. They are useful for every type of 
experiment and analysis due to their homogeneous size. For the distinct region of interest, 
these photos are subsequently shrunk and color-filtered. It can be difficult to find a rib-
utes that are appropriate for the goal-mining algorithm. The Canny edge detector and 
HOG feature descriptor are used to accomplish feature identification and describe the im-
ages after a rigorous inspection of the images, taking our purpose into account. Principle 
component analysis is used to decrease the feature dimensions. Random forest, naive 
Bayes classifier, support vector machine, and logistic regression are used for classification. 
Figure 1 describes each step of the proposed methodology. In the preprocessing phase, 
various operations, such as resizing, noise removal, and contrast adjustment, are carried 
out, and then features are extracted. After that, dimension reduction is applied for PCA, 
and finally classification is carrried out using classifiers. At the final stage, a multiclass 
classifier is used for classification. 

 
Figure 1. Proposed framework. 

3.1. Dataset Description 
The All-IDB1 [19] and own acquired photos from pathology were used to obtain mi-

croscopic images of white blood cells for the suggested technique. There are 1208 photos 
in this dataset. A total of 549 of these photos are benign, while 659 of them are malignant. 
There are roughly 93,000 blood components. Lymphocytes are labeled in this dataset. 
There are 5510 lymphoblasts among the components. Figure 2 describes the sample im-
ages from the dataset under various different conditions. These images are used to extract 
the features and obtain the final classification. 

   

Figure 2. Sample images from datasets.

3.2. Image Pre-Processing

The term “image pre-processing” refers to the preliminary steps taken with an im-
age before any further processing. If information is quantified by entropy, then these
actions have the opposite effect, increasing the image’s information value. The goal of
pre-processing is to improve the quality of the picture data by reducing artifacts such as
noise and enhancing features such as contrast, which will be used in subsequent analyses.
When processing a picture, redundancy can be quite helpful. Adjacent pixels representing
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the same physical object have similar or identical brightness values. If a deformed pixel
is located in the image, it can be restored by taking the average of the values of the pixels
immediately surrounding it. One way to classify picture pre-processing methods is by the
size of the pixel neighborhood used in the calculation of the new pixel brightness. During
the pre-processing phase, we eliminated the backdrop, cut off the surplus of blood flow,
enhanced the image, reduced the noise, filtered the image, and sharpened it.

3.3. Feature Extraction

Before being used for further categorization, the obtained visual data must first un-
dergo a process called feature extraction, during which they are turned into a specific
collection of features and labeled. At this point, the characteristics of objects that were
segmented from either the entire image or specific areas of the image are retrieved and
recognized. In other words, feature extraction is the process of creating a set of features
from the visual input in order to recognize patterns. The objects in the image can each
be parsed for a variety of characteristics, including [20] shape characteristics (such as
area, perimeter, and solidity), texture characteristics (such as homogeneity, energy, angular
second, and others), statistical characteristics (such as mean, skewness, and variance),
geometrical characteristics (such as perimeter, area, compactness, and symmetry), and
color characteristics.

These characteristics can be extracted from the objects in the image. Because blast cells
(ROI) carry a multitude of information, including information about their cytoplasm and
nucleus, the feature-extraction stage is critical for identifying the kind of acute leukemia.
The retrieved photos show rounded cells. For convenience, during feature detection, an
intelligent edge detection algorithm is applied to each image. A Gaussian filter is used to
smooth the image and get rid of noise. Next, we calculate the intensity variations within
the image. The two-fold threshold is then applied to locate possible image boundaries.
Hysteresis is then used to follow the contours of the image. To finish the edge identification
process, weak edges that are not related to strong edges are suppressed. Figure 3 describes
the step-by-step effect on the sample images. Figure 3a shows a sample image after the
processing and color filtering; Figure 3b shows the image after performing the operation.
Figure 3c shows the effect after the feature-extraction process and Figure 3d shows the
effect after the feature-description process.
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3.4. Feature Dimension Reduction

Feature extraction, which comes after segmentation, is a crucial step in accurate
classification. Features are adjectives that describe an image and indicate their inherent
similarities. The classifier then uses these features and their labels to match various photos
and categorize them into distinct classes [21]. Using the HOG feature descriptor, each image
is converted into a feature vector, a one-dimensional array. The speed may be affected by
this feature vector’s 352,836 dimensions, which is a relatively large number. The resultant
array’s dimensions or columns are reduced using the the principal component analysis
(PCA) dimension reduction approach. The purpose of using PCA was to lower the size of
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the final feature vector and, as a result, enhance performance. In this study, only the top ten
principle components were employed for classification, which results in a feature vector
with a size of 10.

3.5. Classification

With so many available options, we decided to employ a wide range of strategies
in this role. Several models were used to perform the classification, some of which used
the whole feature vector while others used feature selection to reduce the dimensionality.
Classification models such as naive Bayes [22], SVM, K-nearest neighbour with varying
values of K, and random forest were tried and tested. We compared the performance of
K-nearest neighbour, naive Bayes, and random forest, three sequential forward-feature-
selection methods.

Since there is no test set in the dataset, we split it up into five equal portions. Four
were used during instruction and two during testing using cross-validation. Matching
accuracy, precision, recall, and f1-score were calculated for each test performed on each
fold. The results were then averaged to make a model evaluation. Separately evaluating
each “fold” of the experiment improves the reliability of the results.

3.6. Multi-Class Classification

After feature extraction, choosing the appropriate classifier is a crucial step that
requires both the input and the expected outcome to be considered. Even though many
classifiers are binary classifiers, they can be used for multi-class classification. In the
suggested work, we divided leukocytes into five classes using a multi-class categorization.
This is a result of the variety of blood smear pictures, for which it is impractical to train
a single classifier due to its poor performance. Experimentation has demonstrated that
multi-class classifiers outperform conventional techniques.

4. Result and Discussion

Both the qualitative and quantitative aspects of the experimental results of the sug-
gested hybrid model classification methodology are provided. Using the information we
acquired, we put the suggested strategy to the test. For diagnosis, the leukocytes were
specifically segmented so that the structure and colour of their nuclei could be seen clearly.
The underlying truth was contrasted with the suggested technique. This algorithm is
capable of accurately locating and dividing the five kinds of leukocytes. Three metrics
were used to evaluate the proposed segmentation technique: false-positive rate (FPR),
false-negative rate (FNR), and F- measure. Table 1 illustrates the results obtained from
the proposed model. Table 1 focuses on the performance metrics of the various classifiers
used in the research. Table 1, showing the comparative analysis, describes the accuracy,
precision, recall and F-score values for classifiers. Support vector machine obtained the best
performance metric results compared to other classifiers. Figure 4 describes the comparison
graph that was used for analysis. This figure focuses on classifier performance in terms of
the performance metrics defined in the research.

Table 1. Comparative analysis.

Classifier Precision
(%) Recall (%) F-Score (%) Accuracy

(%)

Random Forest 98.2 97.60 97.60 97.60

Support Vector Machine 99.00 98.80 98.80 98.85

K-Nearest Neighbors 97.30 96.60 96.60 97.10

Naïve Bayes 98.20 97.80 97.80 98.08
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5. Conclusions

Leukaemia is a type of blood cancer that commonly affects children and adults. The
type of cancer and the extent of its dissemination throughout the body affect leukemia
treatment. For the patient to receive the right care and heal, the disease must be identified as
soon as feasible. This study presents a novel strategy for the totally automatic identification
and classification of leukocytes utilizing microscopic images. The purpose of this work is
to provide an automated technique to support medical activity in the detection of acute
lymphocytic leukemia (ALL).

In order to do so, we presented a revolutionary approach. The suggested approach
successfully separates WBCs from blood smear images and correctly categorizes each
segmented cell according to experimental data. When compared to other classifiers, the
suggested classifier was shown to have greater accuracy. Multi-class classifiers improve
overall accuracy when classifying the different leukocyte subtypes. Additionally, increasing
the dataset’s size will be necessary to provide the classification model with more examples
to use during the training phase and to enable us to apply a validation method other than
10-fold cross-validation.
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