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Abstract: The safety impacts of cooperative platooning in mixed traffic consisting of human-driven,
connected, and connected–automated vehicles were evaluated. The cooperative platooning, in
the case of the mixed traffic control algorithm evaluated here, was cooperative adaptive cruise
control with an unconnected vehicle (CACCu). Its safety and string stability were evaluated using a
high-fidelity simulation based on real-world vehicle trajectories. An adaptive cruise control (ACC)
algorithm was selected for comparison purposes. The results indicate that the cooperative platooning
in mixed traffic control algorithm (CACCu) maintains string stability and operates with greater safety
than the ACC.

Keywords: cooperative platooning; cooperative adaptive cruise control; surrogate safety; safety
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1. Introduction

With the introduction of self-driving automated vehicles and connected vehicles,
vehicles can benefit from automation and connectivity. One promising technology is
cooperative platooning. Studies have shown that cooperative adaptive cruise control
(CACC) can maintain a time headway of 0.6 s between vehicles [1]. Fully connected
and automated vehicles can significantly improve mobility, safety, and sustainability by
shortening time headway and ensuring string stability [2–4]. However, we do not expect
that 100% fully connected automated vehicles will be available in the near future. A
connected automated vehicle following another connected automated vehicle can engage
in cooperative platooning using CACC. However, when it encounters a human-driven,
unconnected preceding vehicle, it must fall back to adaptive cruise control (ACC), which
can automatically control the vehicle’s longitudinal movement to ensure a safe distance
from the preceding vehicle. Although ACC performs better than simple cruise control and
is safer than a human driver, it significantly downgrades the performance of the ego vehicle
compared to that of CACC. The main reason why ACC does not perform well is the lack of
cooperative control between vehicles.

Researchers have explored cooperative platooning control strategies with mixed traffic
of connected automated and human-driven vehicles. These include the graceful degrada-
tion of CACC (dCACC) based on a preceding vehicle’s estimated acceleration [5], connected
cruise control exploring the benefits of communications with an out-of-sight preceding
vehicle [6–8], and cooperative adaptive cruise control with unconnected vehicles (CACCu)
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that functions through a control strategy maximizing the string stability of the ego vehicle
using the further connected preceding vehicle’s feedforward signal [9,10].

The primary purpose of this paper is to assess the safety impacts of cooperative
platooning in mixed traffic, including connected automated vehicles and human-driven
vehicles. The remainder of this paper is organized as follows. Section 2 describes the control
algorithm selected for this study and the safety assessment measures considered. Section 3
discusses the data used for this study, and Section 4 evaluates the data and presents the key
findings. Finally, Section 5 discusses the conclusions and future research.

2. Cooperative Platooning in a Mixed Traffic Control Algorithm and Safety Measures

This section discusses the algorithm for cooperative adaptive cruise control with
unconnected vehicles (CACCu) previously developed by Zheng and Park [9]. Figure 1
shows a framework of the CACCu. A key innovation over ACC is the use of a feedforward
signal from a further connected preceding vehicle. Unlike ACC, which implements a
feedback control using information from the immediately preceding vehicle based on its
sensor, CACCu acts in the same manner as CACC by taking advantage of a connected
further preceding vehicle.
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Figure 1. Cooperative adaptive cruise control with an unconnected vehicle framework.

The authors demonstrated that the virtual preceding vehicle filter attached to the
original CACC feedforward filter helped the ego vehicle to stay string-stable at a gap
significantly shorter than that in ACC. Both the high-fidelity simulation and field test
concluded that CACCu outperforms ACC in regard to string stability, comfort, and sustain-
ability based on the number of speed overshoots, acceleration root mean square, and fuel
consumption, respectively [10,11].

As mentioned earlier, surrogate safety measures called time-to-collision (TTC) and
the spacing error are used to assess safety impacts. TTC has been widely used in safety
assessment in cases when the number of actual crashes is either low or not readily avail-
able [12,13]. The spacing error (SE) is determined by the difference between the summation
of “ego vehicle speed x desired time headway + jam density” and the gap distance between
the ego and preceding vehicles.

3. Vehicle Trajectory Data and High-Fidelity Simulation

The human-driven vehicle trajectories used in this study are from the Next-Generation
Simulation (NGSIM) program [14]. Three representative trajectory data sets were carefully
selected for analysis. The NGSIM data provide information on the position, speed, and ac-
celeration of each vehicle every 0.1 s. It should be noted that the speed and acceleration data
were smoothed to minimize noise and jerks caused by derivations from the position data.

As shown in Figure 1, the scenarios in this study are composed of a series of three
or more consecutive vehicles from the NGSIM data. The performance of a human-driven
vehicle is evaluated using the ego vehicle (i.e., the first vehicle), while the performance of
ACC and CACCu vehicles is evaluated by applying the corresponding control algorithms
to the ego vehicle. It is worth noting that the CACCu control algorithm utilizes the second
preceding vehicle. For more details on the CACCu and ACC algorithms, please refer to [9].
The simulation was implemented with the MATLAB program, with three sets of three
consecutive vehicles.
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4. Simulation Results and Key Findings

When cooperative platooning is considered, the string stability is measured based
on the number of speed overshoot events. This refers to the ability of an ego vehicle to
smoothly follow its preceding vehicle without exceeding its speed. As noted, a desired
time headway of 1.5 s is used in this evaluation to ensure safety, even during a field
operation test. However, in the NGSIM data, human drivers do not necessarily maintain
this time headway.

As shown in Figure 2, ACC resulted in five speed overshoot events for the ego vehicle,
while CACCu resulted in zero overshoot events. This indicates that CACCu significantly
improves ride comfort by maintaining string stability.
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In addition to the overshooting speed events, safety was assessed using the time-to-
collision (TTC) and spacing errors. With the desired time headway of 1.5 s, the TTC values
are always higher than a safety concern. Thus, the spacing errors are considered for safety
assessment. As shown in Figure 3, the spacing error distribution under ACC has far greater
variability, often being higher than 3 m. On the other hand, CACCu shows a much tighter
distribution, indicating a lesser likelihood of crashes. The spacing errors from the other
two trajectories show similar trends.
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5. Conclusions and Future Research

In this paper, the safety impacts of cooperative platooning in mixed traffic were
assessed using spacing errors by comparing the performance of CACCu with that of
ACC. The maximum spacing error was 1.6 m for CACCu, while results of up to 3 m were
observed for ACC. The simulation results from this paper support the notion that CACCu,
or cooperative platooning in mixed traffic, offers much safer control than the ACC. The
results were consistent for three randomly selected real-world trajectories from the NGSIM.

Future research should consider the performance of field operation tests. It is recom-
mended that additional simulations be performed using a vehicle-dynamics-based model,
such as Carla or Carla-ROS. The latter would allow for the extension of a control algorithm
to connected automated vehicles utilizing ROS.
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