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Abstract: The objective of this work is to determine the appropriate resolution of pavement textures
representative of their surface skid resistance. The friction and the texture of different pavement
surfaces were first measured. Then, the friction of these pavements was computed using the dynamic
friction model (DFM) and the resampled textures at different resolutions. Finally, a comparison of the
experimental and model results is made possible to determine the optimal resolution, bringing them
as close as possible. After analyzing the results, it was found that the optimal resolution is 500 µm in
these study conditions.
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1. Introduction

Pavement friction is one of the most important parameters for the safety of road
users. Indeed, this pavement property allows vehicles to minimize their stopping distance
and thus, minimize collision risks. The most important pavement parameter with respect
to friction is its surface texture. Indeed, this texture, composed of several wavelengths
generally classified in two groups (microtexture and macrotexture), and which allow, via its
penetration of tire tread, to oppose the movement of the tire. However, to our knowledge
and despite the definition of these two texture ranges, no study or expert has stated the
resolution at which these surface textures should be captured [1–6].

And yet, defining this resolution would make it possible to completely dispense with
actual measurements of tire–pavement friction. Which, instead of reporting the pavement
contribution only, will also strongly depend on the tire, as well as the operating conditions
of the contact [7]. The appropriate captured texture would allow the definition of the texture
parameters correlating with pavement friction. It is obvious that the same texture parameter
of the same surface will depend on the resolution with which the surface is captured. Hence,
the need to define the appropriate resolution of pavement texture representative of its
friction is obvious.

2. Approach

To explore the texture resolution effect, the friction and the texture of a set of pavement
surfaces are first measured. Then, in a second step, from these measured textures, different
new resolutions are created by resampling. The friction of these resampled textures is
calculated using the dynamic friction model (DFM [8–13]), a model already validated. In a
third step, a comparison between calculated friction (with the DFM) and the experimentally
measured friction on the set of pavement surfaces are conducted in order to determine
which of the resolutions (obtained after resampling) allows the most accurate prediction.
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3. Dynamic Friction Model

The DFM or dynamic friction model is a friction model of a rubber pad/pavement
based on the modeling of the contact of these two bodies [8–13]. This model considers the
type of rubber, the roughness of the road, the level of wetting and the operating conditions
(load, sliding speed, etc.). It has been validated several times and has thus shown its ability
to predict the friction between a rubber pad and a pavement surface. This model has
also not evolved since its development, as it is a fairly comprehensive representation of
tire/pavement friction, considering the characteristics of the tire as its geometry, tread, slip
rate, etc. For all calculations performed with the DFM, the contribution of wavelength
scales is considered below the resolution as being µadh = 0.145. (This adhesion friction
coefficient corresponds to the optimum value which, inputted to the DMF, outputs the best
prediction of the experimental friction.) [8–13].

4. Raw Experimental Data

Thirty different surfaces were tested. These 30 surfaces were obtained from 5 different
types of aggregates; for each of these aggregates, 1 asphalt and 1 mosaic sample were
made [14]. Each of these samples underwent three levels of polishing using the polishing
head of the Wehner–Schultz machine [14,15], which makes three states of roughness for
each sample. So, in summary: 3 aggregates times 2 types of samples times 3 levels of
polishing. Each of these 30 surfaces underwent friction measurement using the friction
head of the WS machine.

Additionally, each texture of these 30 surfaces was captured at 10 µm resolution using
a high resolute profilometer. Each original texture is composed of 15 parallel profiles,
76 mm long, spaced at 0.5 mm and sampled every 10 µm. The other 4 resolutions were
generated from the original texture via resampling as follows. To achieve 100 µm resolution
(and, respectively for 500 µm, 1000 µm, and 5000 µm), 1 in 10 points (50 points, 100 points,
and 500 points, respectively) was retained from the original profile. So, in addition to the
original resolution, 4 other resolutions of 100 µm, 500 µm, 1000 µm, and 5000 µm of each
surface were obtained from the one at 10 µm (Figure 1).
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Figure 1. Example of an original profile and the 4 others resolution of that profile.
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5. Results and Discussion

The selected surfaces and the polishing carried out on them allowed us to cover a
wide range of friction ranging from 0.2 to 0.6. The figures below compare the experimental
results with the computational results from the DFM. The curves in Figure 2 show the
correlation lines between measured and calculated friction for the five resolutions. For
each resolution, the R2 was evaluated. Figure 3 shows the variation of R2 as a function
of resolution.
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When analyzing these curves, we can conclude that the representative resolution of the
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resolutions. Any texture parameter to be computed in the future to report on this pavement
characteristic must then be computed from a texture captured at this resolution.

6. Conclusions

The objective of this work was to determine the appropriate resolution of pavement
textures representative of their frictions. A set of pavement surfaces have been selected
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