
Citation: Tamagusko, T.; Ferreira, A.

Optimizing Pothole Detection in

Pavements: A Comparative Analysis

of Deep Learning Models. Eng. Proc.

2023, 36, 11. https://doi.org/

10.3390/engproc2023036011

Academic Editor: Hosin (David) Lee

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Optimizing Pothole Detection in Pavements: A Comparative
Analysis of Deep Learning Models †

Tiago Tamagusko and Adelino Ferreira *

Research Centre for Territory, Transports and Environment (CITTA), Department of Civil Engineering,
University of Coimbra, 3030-788 Coimbra, Portugal; tamagusko@mail.com
* Correspondence: adelino@dec.uc.pt
† Presented at the Second International Conference on Maintenance and Rehabilitation of Constructed

Infrastructure Facilities, Honolulu, HI, USA, 16–19 August 2023.

Abstract: Advancements in computer vision applications have led to improved object detection
(OD) in terms of accuracy and processing time, enabling real-time solutions across various fields. In
pavement engineering, detecting visual defects such as potholes, cracking, and rutting is of particular
interest. This study aims to evaluate YOLO models on a dataset of 665 road pavement images labeled
with potholes for OD. Pre-trained deep learning models were customized for pothole detection using
transfer learning techniques. The assessed models include You Only Look Once (YOLO) versions 3,
4, and 5. It was found that YOLOv4 achieves the highest mean average precision (mAP), while its
shortened version, YOLOv4-tiny, offers the best-reduced inference time, making it ideal for mobile
applications. Furthermore, the YOLOv5s model demonstrates potential, attaining good results and
standing out for its ease of implementation and scalability.

Keywords: computer vision; object detection; pothole; road pavements; YOLO; deep learning

1. Introduction

This paper investigates state-of-the-art computer vision (CV) techniques in detecting
pavement potholes, comparing the performance of various deep learning (DL) models.
Object detection (OD) methods, which identify and locate objects in images or videos, have
evolved from traditional image processing techniques, such as the Viola-Jones Detector [1]
and Histogram of Oriented Gradients, to DL implementations [2,3]. These DL implemen-
tations have demonstrated better performance, particularly in complex scenarios, due to
their supervised learning approach and the availability data. Hence, the community effort
to create massive datasets such as MS COCO [4], PASCAL [5], and IMAGENET [6], has
helped the field to evolve. Still, computation power, mainly with GPUs, rapidly increases
year by year [7].

One-stage and two-stage detectors are the main categories of DL applications for
OD. Two-stage detectors typically exhibit higher accuracy but are slower, while one-stage
detectors are faster and more suitable for real-time applications. This article focuses on one
of the most famous families of one-stage detectors: You Only Look Once (YOLO) [8]. The
YOLO algorithm is a fast and accurate object detection model. It divides input images into
grids for simultaneous object detection and classification. Despite lower average precision
than some competitors, YOLO’s detection makes it ideal for low-latency applications.

This article is organized into four sections, with a brief review of the background, a
description of the data and methods used, a presentation of the results, and a conclusion
with future recommendations. By comparing the performance of YOLO models, this
research aims to determine the most effective method to detect potholes in road pavements,
contributing to a safer and well-maintained infrastructure.

Eng. Proc. 2023, 36, 11. https://doi.org/10.3390/engproc2023036011 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023036011
https://doi.org/10.3390/engproc2023036011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-1681-0759
https://doi.org/10.3390/engproc2023036011
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023036011?type=check_update&version=1

Eng. Proc. 2023, 36, 11 2 of 4

2. Data and Methods

This study aims to identify the best model for pothole detection using YOLO-based
implementations. Six deep learning models were compared, including YOLOv3-tiny [9],
YOLOv3 [9], YOLOv4-tiny [10], YOLOv4 [10], YOLOv5s [11], and YOLOv5x [11]. All
models were pre-trained on the Common Objects in Context (COCO) dataset, and transfer
learning was used, so the developed models use the base of previous models adapted to
pothole detection.

A dataset created by Rahman Atikur [12] containing 665 road pavement images with
labeled potholes was used, with a 70/20/10 split for training, validation, and testing. An
example of labeled images can be seen in Figure 1.

Eng. Proc. 2023, 36, x 2 of 4

2. Data and Methods
This study aims to identify the best model for pothole detection using YOLO-based

implementations. Six deep learning models were compared, including YOLOv3-tiny [9],
YOLOv3 [9], YOLOv4-tiny [10], YOLOv4 [10], YOLOv5s [11], and YOLOv5x [11]. All
models were pre-trained on the Common Objects in Context (COCO) dataset, and transfer
learning was used, so the developed models use the base of previous models adapted to
pothole detection.

A dataset created by Rahman Atikur [12] containing 665 road pavement images with
labeled potholes was used, with a 70/20/10 split for training, validation, and testing. An
example of labeled images can be seen in Figure 1.

Figure 1. Example image of potholes with labels.

This experiment used a computer specifically assembled to perform high-demand
computing tasks with the following specifications:
• CPU: AMD Ryzen 9 5950x
• Memory: 32GB DDR4 3000MHz RAM
• GPU: NVIDIA GeForce RTX 3090
• NVIDIA Driver: 510.68.02
• CUDA: 11.6
• OS: Arch Linux, Kernel 5.17.5-arch1-1

Models run on Python version 3.8.13 and Pytorch 1.10.2. Furthermore, instructions
for installation are in the repositories of YOLOv3, YOLOv4, and YOLOv5. In addition, the
customized models were trained using Pytorch and Darknet frameworks, specifically
YOLOv3 and YOLOv5 for Pytorch and YOLOv4 for Darknet. The base models used in
this study are as follows: YOLOv3-tiny (Pytorch, yolov3-tiny.pt), YOLOv3 (Pytorch,
yolov3.pt), YOLOv4-tiny (Darknet, yolov4-tiny.conv.29), YOLOv4 (Darknet,
yolov4.conv.137), YOLOv5s (Pytorch, yolov5s.pt), and YOLOv5x (Pytorch, yolov5x.pt).

Likewise, the same training hyperparameters were used for all models, namely:
• Batch size: 16
• Epochs: 3000
• Image size: 416
• Patience: 100 (for Pytorch base models)

No data augmentation technique was used, but the default parameters for each
model were maintained.

3. Results
The models were compared based on their mean average precision (mAP) and time

to infer an image (Figure 2). The goal is to find a highly precise model for detecting and

Figure 1. Example image of potholes with labels.

This experiment used a computer specifically assembled to perform high-demand
computing tasks with the following specifications:

• CPU: AMD Ryzen 9 5950x
• Memory: 32GB DDR4 3000MHz RAM
• GPU: NVIDIA GeForce RTX 3090
• NVIDIA Driver: 510.68.02
• CUDA: 11.6
• OS: Arch Linux, Kernel 5.17.5-arch1-1

Models run on Python version 3.8.13 and Pytorch 1.10.2. Furthermore, instructions for
installation are in the repositories of YOLOv3, YOLOv4, and YOLOv5. In addition, the cus-
tomized models were trained using Pytorch and Darknet frameworks, specifically YOLOv3
and YOLOv5 for Pytorch and YOLOv4 for Darknet. The base models used in this study are
as follows: YOLOv3-tiny (Pytorch, yolov3-tiny.pt), YOLOv3 (Pytorch, yolov3.pt), YOLOv4-
tiny (Darknet, yolov4-tiny.conv.29), YOLOv4 (Darknet, yolov4.conv.137), YOLOv5s (Py-
torch, yolov5s.pt), and YOLOv5x (Pytorch, yolov5x.pt).

Likewise, the same training hyperparameters were used for all models, namely:

• Batch size: 16
• Epochs: 3000
• Image size: 416
• Patience: 100 (for Pytorch base models)

No data augmentation technique was used, but the default parameters for each model
were maintained.

Eng. Proc. 2023, 36, 11 3 of 4

3. Results

The models were compared based on their mean average precision (mAP) and time
to infer an image (Figure 2). The goal is to find a highly precise model for detecting and
locating potholes while maintaining a short inference time. YOLOv4, YOLOv4-tiny, and
YOLOv5s models stood out as the best options.

Eng. Proc. 2023, 36, x 3 of 4

locating potholes while maintaining a short inference time. YOLOv4, YOLOv4-tiny, and
YOLOv5s models stood out as the best options.

Figure 2. Mean average precision vs. time to infer one image.

YOLOv4 demonstrated greater confidence in predicting small potholes compared to
YOLOv5-based models. The detected objects were similar in YOLOv4 versions, and their
confidence levels were better than those of YOLOv5 models.

The detailed results are shown in Table 1, with YOLOv4 and YOLOv4-tiny present-
ing excellent results in terms of mAP, model size, and detection time. In addition, it is
believed that mAP could be improved by improving label quality, increasing training
data, tuning hyperparameters, and using data augmentation. More precise labeling, such
as polygonal segmentation, could also help improve the results.

Table 1. Comparison of YOLO models.

Model mAP @0.50 Size (MB) mAP @0.50 Training (s) Inference (ms)
YOLOv3-tiny 64.8% 16.6 64.8% 779.4 1.4
YOLOv3 75.0% 117.7 75.0% 1002.3 6.8

YOLOv4-tiny 76.7% 22.4 76.7% 249.2 1.5
YOLOv4 83.2% 244.2 83.2% 1254.1 5.9
YOLOv5s 77.4% 13.6 77.4% 512.6 4.5
YOLOv5x 76.9% 165.0 76.9% 1430.7 10.4

Lastly, limitations of this study include the small dataset of 665 images, limited qual-
ity of the labels, lack of hyperparameter tuning, and no direct testing of the algorithm’s
performance in real time. Furthermore, only YOLO implementations were evaluated.

4. Conclusions
The best result obtained for pothole detection in the dataset used was with YOLOv4,

reaching a mAP of 83.2%. Still, the implementation with YOLOv4-tiny presents good po-
tential for mobile applications or devices with less computational power. However, train-
ing a custom model with YOLOv4 and its usability turns out to be more complex with the
use of the Darknet framework. This becomes an obstacle to putting the model into pro-
duction and the solution’s scalability. On the other hand, version 5 could have better re-
sults with some tuning. However, its Pytorch-based implementation is a plus. Conse-
quently, it is recommended to keep the YOLOv4, YOLOv4-tiny, and YOLOv5s models in
mind, depending on the application.

Figure 2. Mean average precision vs. time to infer one image.

YOLOv4 demonstrated greater confidence in predicting small potholes compared to
YOLOv5-based models. The detected objects were similar in YOLOv4 versions, and their
confidence levels were better than those of YOLOv5 models.

The detailed results are shown in Table 1, with YOLOv4 and YOLOv4-tiny presenting
excellent results in terms of mAP, model size, and detection time. In addition, it is believed
that mAP could be improved by improving label quality, increasing training data, tuning
hyperparameters, and using data augmentation. More precise labeling, such as polygonal
segmentation, could also help improve the results.

Table 1. Comparison of YOLO models.

Model mAP @0.50 Size (MB) mAP @0.50 Training (s) Inference (ms)

YOLOv3-tiny 64.8% 16.6 64.8% 779.4 1.4

YOLOv3 75.0% 117.7 75.0% 1002.3 6.8

YOLOv4-tiny 76.7% 22.4 76.7% 249.2 1.5

YOLOv4 83.2% 244.2 83.2% 1254.1 5.9

YOLOv5s 77.4% 13.6 77.4% 512.6 4.5

YOLOv5x 76.9% 165.0 76.9% 1430.7 10.4

Lastly, limitations of this study include the small dataset of 665 images, limited quality
of the labels, lack of hyperparameter tuning, and no direct testing of the algorithm’s
performance in real time. Furthermore, only YOLO implementations were evaluated.

4. Conclusions

The best result obtained for pothole detection in the dataset used was with YOLOv4,
reaching a mAP of 83.2%. Still, the implementation with YOLOv4-tiny presents good
potential for mobile applications or devices with less computational power. However,
training a custom model with YOLOv4 and its usability turns out to be more complex

Eng. Proc. 2023, 36, 11 4 of 4

with the use of the Darknet framework. This becomes an obstacle to putting the model
into production and the solution’s scalability. On the other hand, version 5 could have
better results with some tuning. However, its Pytorch-based implementation is a plus.
Consequently, it is recommended to keep the YOLOv4, YOLOv4-tiny, and YOLOv5s models
in mind, depending on the application.

As a future research direction, the goal is to expand these custom models to detect
more classes, such as alligator cracking, block cracking, longitudinal or transverse cracking,
slippage cracks, and rutting. Additionally, more attention will be given to the data, which
will be expanded and revised. The ultimate goal is to develop a real-time model capable of
detecting various visual defects in road pavements, improving the management of road
assets, reducing costs, and improving road safety.

Author Contributions: Conceptualization, T.T. and A.F.; methodology, T.T.; software, T.T.; vali-
dation, T.T., and A.F.; formal analysis, T.T.; investigation, T.T.; resources, T.T.; data curation, T.T.;
writing—original draft preparation, T.T.; writing—review and editing, T.T. and A.F.; visualization,
T.T.; supervision, A.F.; project administration, A.F.; funding acquisition, A.F. All authors have read
and agreed to the published version of the manuscript.

Funding: The author Tiago Tamagusko is grateful to the Portuguese Foundation for Science and
Technology for the PhD Grant 2020.09565.BD. This research was funded by the Research Center for
Territory, Transports and Environment—CITTA (UIDP/04427/2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and models are available at github.com/tamagusko/pothole-detection.

Acknowledgments: The authors would like to thank the support of the Research Centre for Territory,
Transports, and Environment CITTA (UIDP/04427/2020) and also ACIV for the presentation of this
paper in the conference.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Viola, P.; Jones, M. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2001, 57, 137–154. [CrossRef]
2. Mittal, U.; Srivastava, S.; Chawla, P. Review of Different Techniques for Object Detection Using Deep Learning. In Proceedings of

the Third International Conference on Advanced Informatics for Computing Research, Shimla, India, 15–16 June 2019; Association
for Computing Machinery: New York, NY, USA, 2019.

3. Xiao, Y.; Tian, Z.; Yu, J.; Zhang, Y.; Liu, S.; Du, S.; Lan, X. A review of object detection based on deep learning. Multimed. Tools
Appl. 2020, 79, 23729–23791. [CrossRef]

4. Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Doll, P. Microsoft COCO: Common Objects in Context. Eur. Conf.
Comput. Vis. 2014, 8693, 740–755.

5. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes (VOC) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

6. Fei-Fei, L.; Deng, J.; Li, K. ImageNet: Constructing a large-scale image database. J. Vis. 2010, 9, 1037. [CrossRef]
7. Pal, S.K.; Pramanik, A.; Maiti, J.; Mitra, P. Deep learning in multi-object detection and tracking: State of the art. Appl. Intell. 2021,

51, 6400–6429. [CrossRef]
8. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; Volume 1,
pp. 779–788. [CrossRef]

9. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [CrossRef]
10. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934. [CrossRef]
11. Jocher, G. “YOLOv5”, Ultralytics. Available online: https://github.com/ultralytics/yolov5 (accessed on 23 July 2020).
12. Atikur, R. Annotated Potholes Image Dataset. Available online: https://www.kaggle.com/chitholian/annotated-potholes-dataset

(accessed on 15 April 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

github.com/tamagusko/pothole-detection
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://doi.org/10.1007/s11042-020-08976-6
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1167/9.8.1037
https://doi.org/10.1007/s10489-021-02293-7
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.2004.10934
https://github.com/ultralytics/yolov5
https://www.kaggle.com/chitholian/annotated-potholes-dataset

	Introduction
	Data and Methods
	Results
	Conclusions
	References

