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Abstract: Autonomous navigation is one of the key tasks in the development of control systems
for real autonomous mobile objects. This paper presents the developed technology for accurately
determining the position of a mobile robot in an autonomous operating mode without an external
positioning system. The approach involves using a high-precision model of a real robot identified
by a neural network. The robot adjusts its position, determined using odometry and video camera,
according to the position of the robot, obtained using an accurate model. To train the neural network,
a training set is used that takes into account the features of the movement of a wheeled robot,
including wheel slip. In the experimental part, the problem of autonomous movement of a mobile
robot along a given trajectory is considered.
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1. Introduction

Currently, there are many types of navigation of autonomous unmanned robots. Satel-
lite navigation is certainly a common way. However, it also has a number of applicability
limitations. For example, indoors, the satellite signal usually does not reach devices through
concrete and metal structures. In this case, due to the fact that the space inside buildings is
often limited to relatively small areas, it is possible to use navigation tools such as triangu-
lation [1], navigation through various markers such as QR codes [2,3], barcodes [4], ArUco
markers for position correction [5–7], and SLAM navigation [8,9], as well as combinations
of the above methods.

In unexplored spaces, the most promising of the mentioned technologies is the SLAM
navigation method [10]. This method can be used in an unprepared and unknown to the
robot room to create a map and then use it. At present, this concept is widely used in the
field of robotics for solving problems of autonomous motion [11–13]. According to SLAM,
the robot needs to know its location at every moment of time, and also gradually scans the
surrounding space with the help of sensors, thus compiling a map of the area. The map is
built gradually as the robot explores new areas.

The main source of information about the location of the robot is odometry obtained
in one way or another (wheels, computer vision, IMU, or a combination of both). However,
any sensory system has its weak points. Therefore, for example, cameras can fail when
lighting changes, or wheel slip can occur, causing an odometry error. In this regard, it
becomes necessary to support the navigation system in some way independent of the
readings of the sensors. This explains the relevance of this study.

The paper proposes the use of model-based navigation as a parallel system. In this
case, one system can correct its values relative to the other.
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Receiving a mathematical model for the control object is often time-consuming and
sometimes even impossible using traditional methods. To build a mathematical model of a
robot, the laws of theoretical mechanics and the Lagrange equations of the second kind for
generalized coordinates are used. It should be noted that the analytical derivation of the
robot dynamics equations in most cases will not accurately determine some parameters
of the model, for example, friction coefficients of the robot moving parts or moments of
inertia of rotating structures. Thus, the analytical output of mechanics equations allows
one to build models with accuracy to the values of some parameters.

In view of the increasing diversity and extremely complex nature of control objects,
including the variety of modern robotic systems, the identification problem is becoming
increasingly important, which allows one to build a mathematical model of the control
object, having input and output data about the system. Conducting experiments in order
to identify the correspondence of the mathematical model to a real object is the necessary
stage of solving the identification problem.

The identification of a nonlinear system is of particular interest, since most real systems
have nonlinear dynamics, and if, earlier, the identification of a system model consisted
of the selection of optimal parameters for the selected structure, then the emergence of
modern machine learning methods opens up broader prospects and allows one to automate
the identification process itself. Thus, this process should also be automated and, therefore,
must be considered as the task for machine learning.

A modern technique to identify a mathematical model of a robot is the use of artificial
neural networks. To perform this, it is necessary, depending on the assumed complexity of
the robot model, to choose the structure and type of the neural network, then, depending
on the problem to be solved, select a set of controls and build a training sample. Next, it is
necessary to train the neural network so that the resulting neural network reacts to control
actions in the same way as a real object. It is this approach that is presented in this paper
and applied in the described experiments for a mobile robot.

Further, the paper presents a mathematical formulation of the model identification
problem. A universal approach for solving it based on modern methods of machine learning
using neural networks is proposed. As an example, a solution to the navigation problem for a
mobile wheeled robot based on the proposed approach using its identified model is presented.

2. Problem Statement of the Control Object Identification by an Artificial
Neural Network

In the identification problem, the mathematical model of the control object is not fully
or partially known, but the researcher has a real control object or its physical simulator. In
this case, the real control object or physical simulator layout is an unknown function. The
space of the input vectors of this function is the space of admissible controls for this object.

Let some control functions be set as functions of time

uj(·) = vj(t), t ∈ [0; t+], (1)

where uj ∈ U ⊆ Rm, j = 1, . . . , K, U is a compact set that takes into account control
constraints, and t+ is a limit value of time.

The control functions vj(t), j = 1, . . . , K, should be selected so that it is possible to
determine dynamic abilities and speed limits in straight lines and at turns by the movement
of the control object.

To obtain a training sample, it is necessary to conduct natural experiments. In the
experiment, the control object is subjected to a given control uj(·), j = 1, . . . , K and at fixed
times, ti = i∆t, the state of the control object is stored, x(ti), i = 0, . . . , Dj, where Dj is a
number of time intervals for experiment with control uj(·), j = 1, . . . , K.

A training sample for an artificial neural network is a set of stored values of the vectors
of the control and the state in determined moments of time.

Tj = (T j
i = {u

j(ti), xj(ti), ti = i∆t}i : i = 0, . . . , Dj). (2)
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The input vector for the artificial neural network is an element of the training sample
y(ti) = T j

i , i = 1, . . . , Dj − 1, j ∈ {1; K}.
The output vector for the artificial neural network z(ti) must coincide with the state

space vector for the next moment of time xj(ti+1), i = 0 . . . , Dj − 1, j ∈ {1; K}:

z(ti) = fNN(y(ti)), i = 0, . . . , Di − 1, j ∈ {1; K}. (3)

where fNN(y(ti)) is a function described by the artificial neural network.
A target functional of optimization in the machine learning process of the artificial

neural network is

J0 =
K

∑
j=1

Dj−1

∑
i=0
‖xj(ti+1)− z(ti)‖ → min . (4)

In this case, the trained neural network is an approximation of the mathematical model
of the control object in the form of a system of finite-difference recurrent equations.

If the time interval ∆t was selected to be quite small, then it is possible to use the
artificial neural network as approximation of right parts of ordinary differential equation
system in the Cauchy form. For this purpose, it is necessary to determine a rate of change
of state variables for each time moment:

ẋj(ti) =
xj(ti+1)− xj(ti)

∆t
, i = 0, . . . , Dj − 1, j = 1, . . . , K. (5)

If the rate vector (5) is used as the output vector when training the neural network,
then the mathematical model of the control object has the following form:

xi(ti+1) = xi(ti) + ∆tfNN(xj(ti), uj(ti), ti), i = 1, . . . , Dj − 1, j = 1, . . . , K. (6)

An important step in system identification is to determine the type of model used,
since the overwhelming majority of methods implement the so-called parametric identi-
fication [14]. First, a certain model structure is selected, which is considered suitable for
describing a given object. Next, an identification experiment is carried out in which the
input and output signals are measured, and then the identification method implements
the tuning of the model parameters in accordance with some adaptive laws, so that the
response of the model to the input signal can approximately correspond to the response
of the real system to the same input action. Most often, object identification is used using
linear systems [15], since it is easy to determine the effect of various input signals on the
output for them. Although linear models are attractive for many reasons, they have their
limitations, especially since all physical systems are nonlinear to some extent, and in many
cases linear models are not suitable for representing these systems. In this regard, there
is currently a significant interest in methods for identifying nonlinear systems, especially
using machine learning methods based on neural networks [16–18].

Neural networks, being a universal approximator, provide a powerful tool for iden-
tifying nonlinear systems. In view of the wide distribution and availability of software,
neural networks have gained immense popularity. Combined approaches have also been
developed, based, for example, on the reference model [19]. This article presents the im-
plementation of a combined approach to the identification of a control object based on a
neural network [20].

3. Application Object Description

A wheeled mobile robot shown in Figure 1 is taken as a control object.
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Figure 1. A control object.

The work uses a mixed approach to identification, when part of the object model
is known based on physical laws, and the other part is determined by a neural network
trained on the basis of a specially formed training sample.

The robot motion model is described by a system of differential equations:
ẋ = v cos(θ),
ẏ = v sin(θ),
θ̇ = ω.

(7)

where x, y, andθ define the object state, and v, ω are control signals.
Robot control is implemented using two signals: the desired linear velocity uv and

the desired angular velocity uω. In the model (7), it is assumed that control signals are
completely directly transmitted to the system v = uv, ω = uω. In fact, a completely
different picture is observed: firstly, the speeds cannot change infinitely quickly, and the
system always has a certain dynamics, and secondly, as a rule, there is some regulator at a
lower level that directly controls the voltage supplied to the motors. Therefore, in order to
adequately describe the robot motion model, we introduced two additional equations into
the (7) system that describe an object’s dynamics.

ẋ = v cos(θ),
ẏ = v sin(θ),
θ̇ = ω,
v̇ = f v(v, ω, uv, uω),
ω̇ = f ω(v, ω, uv, uω),

(8)

where f v and f ω are unknown functions to be identified.
Factors such as friction of the wheels on the surface, inertia, and uneven distribution

of the robot’s mass do not allow writing the functions f v, f ω in an explicit form.
For the numerical implementation of the identification problem, Equation (8) is pre-

sented in the finite-difference form with the time step ∆t:

xk+1 = xk + ∆t · vkcos(θk),
yk+1 = yk + ∆t · vksin(θk),
θk+1 = θk + ∆t ·ωk,
vk+1 = Fv(vk, ωk, uv

k , uω
k , ∆t),

ωk+1 = Fω(vk, ωk, uv
k , uω

k , ∆t).

(9)

To identify the system, we used the approximation of the function F by the parametric
function Fφ. The learning function with parameters φ takes the current state of the robot,



Eng. Proc. 2023, 33, 8 5 of 7

the control vector, and the time step as input, and outputs the state of the robot at the next
moment of time:

[vk+1, ωk+1] = Fφ(vk, ωk, uv
k , uω

k , ∆t). (10)

Parameters φ are selected in such a way that the trajectory of the movement of the
object described by the system of Equation (9) with the model (10) repeats the real trajectory
of the robot as closely as possible.

4. ANN Model Identification

For training, the principle of supervised learning was chosen, in which the neural
network is trained using the training dataset “input–reference output”, and then checked
using a set of validation and test data that did not fall into the training sample.

To collect data, multiple runs of the robot were implemented under various types of
control. Figures 2 and 3 show the example trajectories and sample control data.

Figure 2. Sample 1: (a) trajectory; (b) control.

Figure 3. Sample 2: (a) trajectory; (b) control.

An artificial neural network with the multilayer perceptron architecture was chosen as
the training model (10). PyTorch was used to train the neural network. A neural network
with three layers was chosen, with 128 neurons on all hidden layers, an RELU activation
function, and Adam optimization algorithm.

To assess the quality of the model, the accuracy of predicting the trajectory of move-
ment by the model was evaluated on passages that were not included in the training sample.
The neural network receives as input the initial state of the system and the control sequence
for the test drive. As in the training phase, the trajectory of the robot’s movement is pre-
dicted. To compare the predicted and actual trajectories, the ATE metric was used—the
absolute translation error:

JATE =
1
N

N

∑
t=0

√
(xt − x̂t)2 + (yt − ŷt)2, (11)
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where N is the number of points in the trajectory; xt and yt are actual trajectory point
coordinates; x̂t and ŷt are coordinates of the predicted trajectory point.

To assess the quality of the predicted angle, the MAE (mean absolute error) metric
was used.

JMAE =
1
N

N

∑
t=0
|yawt − ˆyawt|, (12)

where yawt is the actual value of the yaw angle, and ˆyawt is the predicted value of the
yaw angle.

The results of simulations of the trained neural network model are shown in
Figures 4 and 5. As can be seen from the presented plots, the robot copes with the task of
following the given trajectory even in the complex environment with strong surface slopes.

Figure 4. The trajectory to follow is given by green points at the distance of (a) 30 cm ; (b) 20 cm. The
robots’s trajectory is a red line.

Figure 5. The robot’s trajectory (red line) in a complex environment of the Robotic Center of FRC CSC RAS.

5. Discussion

This paper presents an approach to the localization of a mobile robot based on the
identified neural network model. The presented results show how the robot copes quite
accurately with the task of following various trajectories. The resulting neural network
model can be used as an independent method of localization or as an auxiliary algorithm
for correcting the position in case of failure of sensors and cameras.
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