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Abstract: The stability of cloud accumulations of gas and dust particles in the field of binary star
systems is studied. As a dynamic model, we consider a restricted three-body problem in which both
main bodies are radiating. We study the stability of collinear libration points (CLL) in a nonlinear
formulation. The problem of CLP stability is considered in three-dimensional parametric space. It
is shown that at the resonance of the fourth order in the plane problem, the points under study are
stable in the sense of Lyapunov. In this case, the invariant normal form and Markeev’s theorem are
used. The stability of the CLP in the spatial problem is considered. The Birkhoff normal form is used
and the Arnold–Moser theorem is used. Results are obtained on stability for most initial conditions
(in the Lebesgue measure) and formal stability.
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1. Introduction

In photogravitational celestial mechanics, along with the forces of Newtonian attrac-
tion Fg, the light pressure is taken into account Fp, coming from the radiating body (star) [1].
In some cases, the luminous flux is so intensive that the force Fp competes with gravity Fg,
and can be even greater than that.

For a particular particle, the magnitude of the light pressure force depends not only on
the power of the radiation source (star), but also on the cross-sectional area, the mass and the
reflectivity of the particle. To determine the connection between the parameters of the star
and the particle, a coefficient Q is introduced, called the particle mass reduction coefficient.
For a particular particle, Q has a constant value that characterizes its susceptibility to
radiation. The relationship between the parameters of the star [2] and the particle gives the
reduction coefficient Q

Q = 1− (1− ε)A
E

f M
(1)

( f is the gravitational parameter of the star, E and M is the mass and power of the
star, A is a windage of the particle, determined by the ratio of the cross–sectional area to its
mass, ε is the coefficient of light reflection). Sufficiently large and dense particles with small
values of the parameters A and ε are most affected by the gravitational force of the star,
therefore, Q > 0. For the smallest particles with high windage and reflection coefficient,
the action of light is greater than gravity (Q < 0).
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The photogravitational three-body problem introduced by V.V. Radzievskiy [3] has
become a good dynamic model for studying the motion of microparticles in binary star
systems.

In the elliptical version of the problem (when the orbits of a stellar pair are elliptical),
we write the equations of motion of a particle in a rectangular system rotating together
with the stars in the form

ẍ− 2ẏ =
∂W
∂x

, ÿ + 2ẋ =
∂W
∂y

, z̈ =
∂W
∂z

(2)

where x, y, z are dimensionless coordinates related to the distance r = p/(1 + e cos v)− 1
between the stars (p and e are the focal parameter and the eccentricity of the relative orbital
motion of the stellar pair) that are the rectangular coordinates of the particle and W is the
force function of the system, equal to

W = (1 + e cos v)−1[(x2 + y2 − z2e cos v)/2 + Q1(1− µ)/R1 + Q2µ/R2]

R1 = [(x + µ)2 + y2 + z2]1/2, R2 = [(x− 1 + µ)2 + y2 + z2]1/2 (3)

Here, µ and 1− µ are the dimensionless masses of the stars, and Q1 and Q2 are the
reduction coefficients of their mass, which represent the ratio of the difference between the
gravitational and repulsive forces to the gravitational force. In terms of physical meaning,
numerical values Q1 and Q2 do not exceed 1. For the classical problem Q1 = 1, Q2 = 1 (no
radiation of bodies) [4].

Libration points—constant solutions of the adopted system of dynamic equations—
represent relative equilibria in a circular problem and periodic motions in an elliptic
problem. They are found from the system of equations

∂W
∂x

= 0,
∂W
∂y

= 0,
∂W
∂z

= 0, (4)

CLP are located on a straight line connecting the main bodies, and for them y = 0, z = 0.
Their positions on the abscissa axis are determined from the first equation of the system (4).
The triangular libration points were carefully studied in [5]. The stability of triangular
points in strictly nonlinear formulation were considered in [6,7]. In [8,9], the nonlinear
analysis of stable coplanar libration points that are not on the plane of orbital motion of
main bodies was completed.

2. Collinear Libration Points and Their Stability in a Plane Problem

The CLP coordinate is determined from the following equation

f (x) = x−Q1
(1− µ)(x + µ)

|x + µ|3 −Q2
µ(x + µ− 1)
|x + µ− 1|3 = 0 (5)

Equation (5) contains three mutually independent parameters µ, Q1, Q2. Therefore,
the problem can consider a three-parameter family of CLPs. Let us consider the case when
both components of the binary star radiate and move in circular orbits. From Equation (5),
we obtain

f ′(x) = 1 + 2a(x), a = Q1
1− µ

|x + µ|3 + Q2
µ

|x + µ− 1|3

Thus, there is a parameter a [10], which is included in the characteristic equation

λ4 + (2− a)λ2 − (1− a)(1 + 2a) = 0, (6)
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its solutions are equal to

λ2
α =

1
2
(a− 2±

√
(9a− 8)a, α = 1, 2

When changing the parameter values a in the intervals 8/9 < a ≤ 1 and −0.5 < a ≤ 0,
roots λα are purely imaginary, and at the boundaries there are multiples. Therefore, the
parameter values indicated above by the inequalities correspond to the stability region
of libration points in the first approximation. In [11], they constructed diagrams of CLP
stability.

In the problem, resonances of the third and fourth orders are found; for third-order res-
onances, the resonant values of the parameter a have the form a∗± = 41/108± 5

√
145/108;

for fourth-order resonances, a± = (68 + 60
√

5)/209. As expected, the resonance of the
third order leads to the instability of the CLP [12].

In [13], it is shown that at the resonance of the fourth order, the CLPs are stable by
Lyapunov.

Below, we consider the stability of the CLP in the spatial problem. The Birkhoff normal
form is used, and the Arnold–Moser theorem [14] is applied.

3. Equations of Motion and Expansion of the Hamilton Function

Particle motion P(x, y, z) is given by the canonical equations

dqi
dt

=
∂H
∂pi

,
dpi
dt

= −∂H
∂qi

, (i = 1, 2, 3) (7)

where qi are the Cartesian coordinates of the particle P(x, y, z), pi are the corresponding
canonical momenta and H(x, y, z, p1, p2, p3) is the Hamilton analytic function with respect
to coordinates and momenta, which, in our case, has the form

H =
1
2
(p2

1 + p2
2 + p2

3) + (p1y− p2x)−Q1(1− µ)/R1 −Q2µ/R2

Rα =
√
(x− xα

2
+ y2 + z2, (α = 1, 2)

(8)

Here, Q1 and Q2 are coefficients of reduction of the masses of the main bodies, which,
in the case of CLP, can take both positive and negative values [10].

We study the stability of the CTL under the assumption that the orbit of the main
bodies is circular and the particle P of infinitely small mass at the initial moment of time
experiences initial perturbations that take it out of the plane of rotation of the main bodies
S1 and S2.

We introduce perturbations into Equation (1) according to the formulas

x = x∗ + q1, y = q2, z = q3, p1 = p∗1 + p1, p2 = p2, p3 = p3

p∗1 = x∗, p∗2 = y∗ = p∗3 = z∗0 = 0,
(9)

where

x∗ = 0.5(Q
2
3
1 −Q

2
3
2 − 1)− µ, p∗1 = ∓0.5

√
2(Q

2
3
1 + Q

2
3
2 )− (Q

2
3
1 −Q

2
3
2 )− 1. (10)

Expanding the Hamilton function in a row according to the degrees of perturbations
and in the neighborhood of the considered collinear point, taken as the origin, we obtain

H = H2 + H3 + H4 + . . . (11)
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Here, Hm are homogeneous polynomials of degree m(m = 2, 3, 4, ...) with respect to
generalized coordinates and impulses pi, so

Hm = ∑
v+l=m

hv1v2v3l1l2l3 · q
v1
1 qv2

2 qv3
3 pl1

1 pl2
2 pl3

3 (12)

Then, in Equation (11), the forms H2, H3 and H4 taking into account (9) will take the
following form:

H2 =
1
2
(p2

1 + p2
2 + p2

3) + p1q2 − p2q1 + h200q2
1 + h020q22 + h002q2

3 + h110q1q2

+h101q1q3 + h001q2q3,
(13)

H3 = h300q3
1 + h030q3

2 + h300q3
3 + h210q2

1q2 + h201q2
1q3 + h120q1q2

2 + h021q2
2q3

+h102q1q2
3 + h012q2q2

3 + h111q1q2q3,
(14)

H4 = h400q4
1 + h040q4

2 + h004q4
3 + h310q3

1q2 + h130q1q3
2

+h103q1q3
3 + h301q3

1q3 + h031q3
2q3 + h013q3

3q2 + h211q2
1q2q3

+h121q1q2
2q3 + h112q1q2q2

3 + h220q2
1q2

2 + h202q2
1q2

3 + h022q2
2q2

3,

(15)

where
h200 = −8a, h020 = 4a, h002 = 4a, h110 = 0, h101 = 0, h011 = 0

h300 = 16b, h120 = −16b, h102 = −16b, h030 = 0, h003 = 0, h210 = 0,

h201 = 0, h021 = 0, h012 = 0, h111 = 0,

h400 = −32c, h040 = −12c, h004 = −12c, h220 = 32c, h202 = 32c,

h022 = −8c, h310 = 0, h130 = 0, h103 = 0, h301 = 0, h031 = 0,

h013=0, h211 = 0, h121 = 0, h112 = 0.

(16)

a =
Q1(1− µ)

|Q2/3
1 −Q2/3

2 + 1|3
+

Q2µ

|Q2/3
1 −Q2/3

2 − 1|3
,

b =
Q1(1− µ)(Q2/3

1 −Q2/3
2 + 1)

|Q2/3
1 −Q2/3

2 + 1|5
+

Q2µ(Q2/3
1 −Q2/3

2 − 1)

|Q2/3
1 −Q2/3

2 − 1|5

c =
Q1(1− µ)

|Q2/3
1 −Q2/3

2 + 1|5
+

Q2µ

|Q2/3
1 −Q2/3

2 − 1|5

(17)

4. Stability of CLP in a Spatial Problem

The question of the stability of the investigated spatial CLPs can be considered as
a stability problem of equilibrium positions qi = pi = 0(i = 1, 2, 3) of an autonomous
Hamiltonian system with three degrees of freedom. As can be seen from (13), here we
have the case when H2 is not a sign-definite function, and the characteristic equation of the
system has no roots with a nonzero real part. Hence, the stability of the complete system
does not follow from the stability of a linear system.

Expanding the Hamilton function into a power series qi, pi in the vicinity of the
considered equilibrium position, first the Hamiltonian H2 is transformed to the normal
form in the form

K2 = ω1r1 −ω2r2 + ω3r3. (18)

The structure of the normal form depends on the type of resonance relation

ω1r1 −ω2r2 + ω3r3 = 0(|k1|+ k2 + |k3| ≤ 4), (19)
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where the frequencies of the principal oscillations for the libration points are equal to

ω1 =

√
(2− a +

√
(9a− 8)a)/2, ω2 =

√
(2− a−

√
(9a− 8)a)/2, ω3 =

√
a. (20)

As can be seen from the last expression, for the frequency of spatial oscillations, the
parameter a can take only positive values. Therefore, resonances containing the frequency
of spatial oscillations can be realized only in a limited part of the region (8/9 < a ≤ 1
and −1/2 < a ≤ 0) for necessary stability conditions of the system. Let us investigate
the stability of CLP at two-frequency resonances. For CLP, the following two-frequency
resonances turned out to be possible:

ω1 = 2ω2, ω1 = 3ω2, 2ω1 = ω3, 3ω1 = ω3, 2ω2 = ω3, 3ω2 = ω3

Resonances ω1 = 2ω2 and ω1 = 3ω2, discovered in the plane problem, were studied
in [12,13]. In the spatial photogravitational problem, resonances of the third and fourth
orders turned out to be possible

2ω1 = ω3, 3ω1 = ω3, 2ω2 = ω3, 3ω2 = ω3

which respectively correspond to the values of the parameter a defined as

a = 4(1 + 2
√

7)/27, a = 4(−1 +
√

10)/9, a = (63 +
√

53217)/304, a = (63 +
√

53217)/304

Note that the last two resonances, 3ω1 = ω3 and 3ω2 = ω3, match. To construct resonance
curves (in the stability region in the linear approximation of the system) for the correspond-
ing specific resonance value of the coefficient a, a curve is constructed, which is determined
by the expression

Q1(1− µ)

|Q2/3
1 −Q2/3

2 + 1|3
+

Q2µ

|Q2/3
1 −Q2/3

2 − 1|3
= a

At resonance 2ω1 = ω3 (which does not involve the frequency of plane oscillations), which
corresponds to the value of the parameter a = 4(1+ 2

√
7)/27, the normalized Hamiltonian

takes the form [14]

H = 2ω1r1 −ω1r3 + A(ω1, ω3)r3
√

r1 sin(ϕ1 + 2ϕ3) + O(r1 + r3)
2, (21)

where A(ω1, ω3) = −
√

ω1(x2
1002 + y2

1002) and the coefficients x1002 and y1002 look like

x1002 = −ω1h0111

2ω1
− h1002

2
+

h1200

2ω2
1

, y1002 = −ω1h0012

2
− ω1h0210

2ω2
1

+
h1101

2ω1
,

which, for collinear points, are equal to

x1002 = −h1200

2ω2
1

, y1002 = 0 (22)

hence, the expression

A(ω1, ω3) = −
√

ω1(x2
1002 + y2

1002) = −
√

ω1x1002

is not equal to zero anywhere; therefore, according to the Arnold–Moser theorem, at a
third-order resonance from the stability region, in the first approximation, we can say that
the CTLs are unstable. If there is a fourth-order resonance in the system, corresponding to
the value of the parameter a = (63 +

√
53217)/304, using the Birkhoff transformation in
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the original Hamiltonian, we annihilate the terms of the third degree. The Hamiltonian
normalized in this case in polar coordinates will take the following form [13]:

H = 3ω1r1 −ω1r3 + c20r2
1 + c11r1r3 + c02r2

3+

B(ω1, ω3)r3
√

r1r3cos(ϕ1 + 3ϕ3) + O(r1 + r3)
5/2,

(23)

where
B(ω1, ω3) =

1
3

ω3

√
3(x2

1003 + y2
1003)

It is important to notice that in the classical problem for a fixed value µ, the coefficients
B(ω1, ω3), c200, c100 and c020 take constant values (which simplifies the investigation of the
problem). In this problem, the same coefficients do not remain constant and are functions
of arbitrary coefficients of the coefficients Q1 and Q2, which makes the task much more
difficult. These are denoted by the coefficients of the Hamiltonian (23)

N1 = c200 + 3c110 + 9c020, N2 = 3
√

3B(ω1, ω3),

where
B(ω1, ω3) =

1
3

ω3

√
3(x2

1003 + y2
1003)

is defined by expressions

x1003 =
1
2

ω1h0013 +
1

2ω3
3

h1300 −
1

2ω3
h1102 −

ω1

2ω2
3

h0211

−9
5
(x0120 ∗ x0012 + y0120 ∗ y0012)−

1
ω3

(x1002y1011 + x1011y1002)

+
4

ω2
3
(x1002x0201 + y1002y0201) +

3
2
(x0003x0111 + y0003y0111),

y1003 = − ω1

2ω3
h0112 +

1
2

h1003 +
1

2ω2
3

h1201 +
ω1

2ω3
3

h0310

−9
5
(x0120 ∗ y0012 + x0012 ∗ y0120)−

1
ω3

(y1011y1002 − x1011x1002)

+
4

ω2
3
(x0201y1002 + x1002y0201) +

3
2
(x0111x0003 + x0003y0111),

where coefficients

h0013, h1300, h1102, h0211, h0112, h1003, h1201, h0310, x0120, y0120,

x1011, y1002, y1011, x0012, y0111, x0201, y0201, x0003, x0003

given for CLP above (16) take values equal to zero, therefore, they are identically equal to
zero x1003 and y1003 . Then, the equality takes place

N2 = 3
√

3B(ω1, ω3) = 0.

Let us now define the value N1 = c200 + 3c110 + 9c020. Here, the coefficients c200, c110c020,
which are invariants of the Hamilton function (11) with respect to canonical transforma-
tions, depend on the coefficients hv1v2l1l2 that are homogeneous polynomials (12) of degree
m(m = 3, 4), which are equal to
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c200 =
3

2ω2
1

h4000 −
27
8

ω2
2y2

0030 −
3
2

x2
1020,

c110 =
1

ω1ω2
h2200 −

2
3

x2
1002 +

3
10

ω2
2y2

0012 + 2x0111x1020,

c020 =
3

2ω2
2

h0400 −
1
6

x2
0111 −

3
40

ω2
2y2

0012,

(24)

where
y0030 = − 1

ω2
1

h3000, x1020 = − 3
2ω2

1
h3000, x1002 =

1
2ω2

2
h1200,

y0012 =
1

ω1ω2
2

h1200, x0111 =
1

ω1ω2
h1200

(25)

Substituting from (16) the values h3000 = 16b, h1200 = −16b in (24), we have

c200 = − 48
ω2

1
c−

864ω2
2

ω2
1

(1 +
1

ω2
1
)2b2 − 96(1− 3

ω2
1
)2b2,

c110 =
32

ω1ω2
c− 96

ω4
2

b2 +
384

5ω2
1ω2

2
b2 − 256

ω1ω2
(1− 3

ω2
1
)b2,

c020 = − 18
ω2

2
c− 32

3ω4
2

b2 − 96
5ω2

1ω2
2b2

(26)

where a, b and c are parameters that depend on reduction factors Q1 and Q2 and dimen-
sionless mass parameter µ. As the calculations showed, the modulus of the expression
N1 = c200 + 3c110 + 9c020 is always different from zero. Consequently, the inequality holds
everywhere |N1| > N2 = 0, which, according to [13], guarantees the existence of Lyapunov
stability. In a similar way, it is proved that at a resonance of the third order 2ω2 = ω3, CLPs
are unstable, and at a fourth-order resonance 3ω2 = ω3 they are stable by Lyapunov. Below
are the regions of the stability of the linear system (colored), in which the resonance curves
of the fourth order are indicated 2ω2 = ω3 for two values of the mass parameter µ.

At µ = 0.001, the resonance curve is located closer to the middle of the stability region
(Figure 1a). When the mass µ increases up to 0.01 (Figure 1b), the region becomes slightly
smaller and the resonance curve becomes closer to the boundary of the stability region and
becomes less noticeable than when µ = 0.001. Apparently, this fact confirms the above
conclusion that resonances containing the frequency of spatial oscillations can be realized
only in a limited part (8/9 < a), being the area of necessary conditions for the stability of
CLP.

Figure 1. (a) Resonance curve of the fourth at µ = 0.001; (b) Resonance curve of the fourth at µ = 0.01.

Note that in the classical problem for a fixed value µ, the coefficients c200, c110, c020
are constants (which much simplifies the investigation of the problem). However, in this
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problem, the same coefficients are not constants but functions of the coefficients Q1 and Q2,
which makes the task much more difficult.

If a ωi does not satisfy condition (19), then after applying the Birkhoff transformation,
the Hamiltonian of the perturbed motion in polar coordinates normalized to the fourth
order inclusive has the form

H∗ = K2(r1, r2, r3) + K4(r1, r2, r3) (27)

Here, K4 is defined by the expression

K4 = c200r2
1 + c110r1r3 + c011r2r3 + c002r2

3 (28)

Now, we use Arnold’s results on the stability of Hamiltonian systems for most of the
initial conditions [13]. It is known that the instability found in the plane problem remains
such in the spatial problem.

Assuming that there are no resonances in the system 2ω1 = ω3, ω1 = 2ω2,
ω1 = 3ω2, 3ω1 = ω3, 2ω2 = ω3, 3ω2 = ω3, consider a fourth-order determinant

D4 = det

∣∣∣∣∣∣
∂2K4
∂ri∂rj

∂K2
∂ri

∂K2
∂rj

0

∣∣∣∣∣∣ (29)

Expanding the determinant (29), we have

D4 = ω2
1(c

2
011 − 4c020c002 + ω2

2(c1012 − 4c200c002)+

+ω2
3(c

2
110 − 4c200c020) + 2ω1ω2(c101c011 − 2c002c110)−

−2ω1ω3(c001c110 − 2c020c101) + 2ω2ω3(c110c101 − 2c200c011)

(30)

The balance position qi = pi = 0 is stable for most initial conditions (by the Lebesgue
measure) when the determinant D4 6= 0. After using numerical analysis, we check the
validity of the inequality D4 6= 0. We see that in the spatial photogravitational three-body
problem, the collinear libration points are stable for most initial conditions (by the Lebesgue
measure) for all a (except for the values corresponding to internal resonances of the third
2ω1 = ω3 and 2ω2 = ω3 and fourth ω1 = 3ω2, 21 = 3ω3, 3ω2 = ω3 orders) from the
stability region in the linear approximation.

The presence of stability in the system for most of the initial conditions means, with a
probability close to unity, that the KTLs are stable in the spatial problem.

As shown by numerical calculations, CLPs are formally stable for almost all values of
the parameters from the stability region in the linear approximation. The exceptions are, in
addition to the values of the parameters corresponding to the studied resonance, perhaps
those values µ, Q1, Q2 from the stability region, at which resonances above the fourth order
are realized.

The presence of formal stability means that Lyapunov instability is not detected over a
practically very long time interval. This suggests that the particles will stay near the stable
libration points for quite a long time.
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