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Abstract: The article discusses approaches to building parallel data storage systems in high-
performance clusters. The features of building data structures in parallel file systems for vari-
ous applied tasks are analyzed. Approaches are proposed to improve the efficiency of access to data
by computing nodes of the cluster due to the correct distribution of data in parallel file storage.
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1. Introduction

The growing need of scientific teams, industrial enterprises, and commercial firms
in solving problems that require high-performance computing resources demands the
creation of computing tools provided to users using cloud and platform technologies. At
present, such computing resources are supercomputers and HPC clusters that make it
possible to carry out calculations using parallel computing technologies. So, the tasks of
mathematical modeling, global optimization, big data analysis, and the training of neural
networks cannot be solved using a single server; powerful multi-node clusters united by
high-performance computing networks are required. The workflow management in such
clusters is a research task aimed at optimizing the computing resources load, minimizing
the waiting and computing time, managing job priorities, and providing computing jobs
with initial data.

Based on HPC clusters, it is possible to create a research infrastructure that provides
tools for miscellaneous scientific calculations to teams of scientists, industry, and developers
of high-tech commercial products [1]. The creation of shared research facilities on the
basis of scientific centers, enterprises, organizations of the Russian Academy of Sciences
and universities makes it possible to increase the efficiency of using computing facilities
and expand the circle of consumers of high-performance computing resources [2]. This
approach to the use of computational tools involves the parallel execution of miscellaneous
types of computational tasks within a single high-performance cluster. In this case, in
order to efficiently use computing resources and minimize the loss of time and money for
re-configuring the HPC cluster, it is necessary to develop a technology that allows creating
individual software environments for various computing tasks and ensuring their parallel
execution in a HPC cluster [3], wherein each computational task obtains access to the parallel
processing information means and inter-process communication. The means of HPC cluster
workflow management create an individual profile for inter-process interaction in a dynamic
virtual environment for each computational task.

The optimization of the loading of the shared research HPC cluster is generally aimed
at ensuring the maximum loading of computing modules, reducing the waiting time for
tasks in the queue, and minimizing equipment downtime.
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To implement such requirements for a HPC cluster, it is of particular importance to
provide computing tasks with initial data. The performance of the means of providing data
to computational jobs should, for example, minimize the processing downtime by waiting
for data to be provided. The tasks of providing data to computational tasks in multi-node
computing systems are solved by creating a specialized file storage that provides parallel
access to cluster computing nodes and data. Thus, the data exchange height speed is
ensured in the conditions of parallel operation of virtual software environments for the
execution of miscellaneous types of computational tasks.

The classical scheme for organizing parallel file access is the use of a group of data
storage nodes connected to computing nodes by a high-speed network. A parallel file
system deployed on storage nodes creates a single data space, ensures information consis-
tency, the duplication of information on different nodes, and control of access to files by
computing nodes.

Both proprietary and open-source implementations of parallel file systems are avail-
able today. For example, proprietary solutions include

• General Parallel File System (GPFS)—developed by IBM;
• Google File System.

IBM GPFS is used by the manufacturer as part of a commercial product, the elastic
storage system, which is a scalable hardware and software data storage system. The Google
File System is used by Google in the company’s high-performance computing clusters.

Among open source parallel file systems, the Lustre project is currently actively
developing, originating from Carnegie University, now supervised by Intel Corporation.
Another open-source project is the Ceph parallel file system supervised by RedHat (IBM).

The direction of providing parallel access to data is currently an actively developing
area of informatics [4–6]. The main efforts of developers and researchers are concentrated
in the following areas:

• Maximizing the volume of data storage;
• Ensuring the required performance during data transfer, taking into account the

number of computing nodes and data storage nodes;
• Development of methods for scaling the file system while maintaining or increasing

performance;
• Development of methods for improving the reliability of parallel file systems.

The architectures and ways of representing data in parallel file systems are dis-
cussed below.

2. Parallel File System Architecture

Consider the architecture of a parallel file system using the Lustre project as an example.
Lustre is a high-performance file system composed of servers and storage. The

Metadata Server (MDS) keeps track of metadata (such as ownership and access rights
to a file or directory). Object storage servers provide file I/O services for object storage
targets that host the actual data store. The storage targets are typically a single disk array.
Lustre’s parallel file system achieves its performance by automatically splitting data into
chunks known as “stripes” and writing the stripes in a round-robin fashion across multiple
storage objects. This process, called “striping”, can significantly increase file I/O speed by
eliminating single disk bottlenecks [7].

A parallel storage system consists of many components, including drives, storage con-
trollers, I/O cards, storage servers, SAN switches, and related management software. Com-
bining all of these components together and tuning them for optimal performance comes
with significant challenges. Figure 1 shows the Lustre parallel file system architecture.



Eng. Proc. 2023, 33, 54 3 of 8

Figure 1. Lustre parallel file system architecture.

The elements of architecture are as follows:

• Control nodes—meta data servers (MDSs);
• Data storage and provision nodes—object storage servers (OSSs);
• Data storage elements—object storage target (OST);
• Metadata storage elements—meta data targets (MDTs);
• High-speed data-processing network.

Metadata servers (MDSs) are the control components of a parallel file system that store
information about all the data in the system, as well as serving client requests for access
to data. Metadata are stored on information resources called metadata targets (MDTs),
implemented either as physical disks or as block devices in a data storage system. To ensure
fault tolerance, metadata servers can be duplicated.

Access to parallel file system clients data is carried out through the metadata server.
When servicing requests, the metadata server identifies the client and selects one of the
nodes for storing and providing data—OSS. The choice is made based on meta-information
about the availability of the requested data on storage elements available to this OSS, as
well as based on information about OSS loading by requests from other clients. After that,
the interaction between the client and the selected OSS is carried out directly through a
high-performance data network. This solves the problem of the formation of “bottlenecks”
in the access of computing nodes to a single data storage [8].

Data storage elements are disk drives directly connected to the OSS as well as logical
drives formed by storage systems based on disk arrays. Data storage and provision nodes
provide the caching of information contained on disks and high-speed exchange with the
data transmission network.

Thus, the architecture of a parallel file system makes it possible to provide data for a
group of computational tasks due to the parallel operation of a group of storage nodes.
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3. Data Storage Structure in A Parallel File System

As noted above, the parallel file storage architecture allows you to provide computing
nodes with access to different storage nodes, which allows you to avoid “bottlenecks” and
prevent performance degradation.

Note that different application tasks may have different requirements for the data
structure stored in the file system.

For big data-processing tasks—telemetry streams, the analysis of accumulated infor-
mation arrays in order to obtain new knowledge (data mining)—where parallel processes of
one computing task performed on different computing nodes require access to independent
data arrays, it is enough to place one application data copy on each storage node and
ensure the interaction of each pair of “computing node–storage node” over a high-speed
data transmission network.

For data-intensive tasks (e.g., preparing training sets for neural networks, and training
neural networks [9]), a more complex structure data storage is required, allowing different
computing nodes to access the same file from several computing nodes. This feature is
supported by the parallel file system by fragmenting files into separate blocks (stripes) [10].

The term “number of stripes” refers to the number of fragments into which a file is
divided; in other words, the number of OSTs that are used to store the file. So, each stripe
of the file will be in a different OST. The “stripe size” refers to the size of a stripe recorded
as a single block in the OST.

The benefits of striping include the following:

• Increased I/O throughput due to multiple file areas being read or written in parallel;
• Helping to balance the use of the OST pool.

However, striping has disadvantages if performed incorrectly, such as increased over-
head due to internal network operations and contention between servers, and throughput
degradation due to inappropriate striping settings.

The default number and sizes of stripes are chosen to balance the I/O performance
needs of multiple parallel execution scales and file sizes. Small files should be striped at
a value of 1. However, setting the stripe number too low can degrade I/O performance
for large files and parallel I/O. Thus, the user must carefully select strip specifications
according to application data.

The striping must be compatible with the application’s I/O strategy and output size.
The increase in the number of stripes and/or the size of the stripes should be proportional
to the number of nodes used for I/O. As a general rule, an application should try to use as
many OSTs as possible. Thus, when writing a large single file in parallel, the maximum
allowable value for the stripe counter is set. Alternatively, when writing a large number
of small files in parallel, set the interleave counter to 1. The intermediate number of
concurrent output files may work better if the number of stripes is greater than 1. An
experimental estimate of the number of stripes is advisable for best performance. Note
that for a number of tasks, the file size correlates with the number of computing nodes that
perform parallel writing to it. Therefore, adjusting interleaving based on file size is usually
sufficient, and a simpler starting point for estimating the number of lanes for subsequent
processing optimization.

Figure 2 shows an example of file distribution across six storage elements.
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Figure 2. The file distribution example.

4. Experience of Application of Parallel File Systems in The Shared Research Facilities
“Informatics”

To conduct research in the field of application of parallel file systems, taking into
account the diversity of tasks solved by a HPC cluster, the parallel file storage stand
was created using the infrastructure of the Shared Research Facilities “High Performance
Computing and Big Data” (CKP “Informatics”) of FRC CSC RAS (Moscow, Russia), which
allows you to provide the data for different types of computational tasks functioning on
the basis of virtual computing environments [11].

During the creation of the stand, the Lustre file system version 2.14.50 was deployed
on six servers of the ARM architecture manufactured by Huawei.

During the experiments carried out on the created stand, the following scientific and
practical work was carried out:

• Deployment of the Lustre parallel file system by compiling open-source software;
• Assessment of the performance and quality of functioning of the parallel file system

in the base case when performing computational tasks of various types;
• Implementation of the developed storage system architecture, data models, access

scenarios by setting up various data storage scenarios;
• Evaluation of performance and quality of functioning of a parallel file system for test

computing tasks that have different requirements for data storage (size and number of
files, multiple access to one file by a group of computing nodes);



Eng. Proc. 2023, 33, 54 6 of 8

• Design of recommendations on “fine tuning” of Lustre file storage in high-performance
computing systems of scientific organizations when solving applied problems of
various types.

The basic approach for configuration parallel data storage is the approach in which the
user creates his own structure of files and directories to store files of various sizes and maps
certain storage patterns to these directories that describe the number and size of stripes.
Tools for such configuration are provided to the user in the form of executable scripts.

Users have the ability to customize the size and number of stripes for any file they use
or create during a computational job. Determining the best settings sometimes requires
experimentation, but there are general rules of thumb.

Let us consider the basic process of writing a file to a Lustre parallel file system as
an example.

Let us assume that 200 MB is to be written to a file that is created with 10 stripes and
a 1 MB stripe. When the file is initially recorded, 10 1 MB blocks will be simultaneously
written to 10 different OSTs. Once those 10 blocks are full, Lustre writes another 10 1 MB
blocks to those 10 OSTs. This process is repeated a total of 20 times until the entire
file is written. When completed, the file will exist as 20 1 MB data blocks in each of
10 separate OSTs.

One of the key factors behind the high performance of Lustre file systems is the ability
to stripe data across multiple storage targets (OSTs) in a round robin fashion. Essentially,
files can be divided into multiple fragments, which are then stored in different OSTs in the
Lustre system.

Larger files benefit from more stripes. By distributing a large file across multiple OSTs,
the system’s throughput for accessing the file increases, which improves efficiency when
multiple processes are working on the same file in parallel. Conversely, a very large file that
is interleaved in only one or two OSTs can degrade the performance of the entire Lustre
system due to unnecessary OST padding. It is good practice to have dedicated directories
with lots of stripes for writing very large files to.

Note that the following method of dividing a file into stripes should be avoided:
dividing small files with a large number of stripes. This can negatively impact performance
due to the unnecessary overhead of communicating with multiple OSTs. In this case, it is
good practice to write small files to a directory with stripes equal to 1, i.e., without striping.

Thus, to configure striping, its main advantages and disadvantages should be considered:

• Advantage 1: increased throughput because multiple processes can access the same
file at the same time;

• Advantage 2: the ability to store large files that take up more space than one OST;
• Disadvantage 1: increased overhead due to network operations and server conflicts;
• Disadvantage 2: increased risk of file corruption due to hardware failure.

Methods for improving reliability are the use of RAID of various levels in data storage
nodes (OSS). At the same time, RAID can be implemented both by means of storage systems
that provide block disk devices to storage nodes, and by means of RAID controllers located
directly on storage nodes. Both methods improve the reliability and fault tolerance of the
parallel file system. At the same time, as the experience of using such configurations in
the CKP “Informatics” shows, the bandwidth for accessing drives increases compared to
accessing single disks due to parallel access to drives.

A separate task is to ensure the reliability and fault tolerance of NVMe SSD drives
connected directly to the PCI bus. The absence of a RAID controller in this case makes
it necessary to take special measures to build fault-tolerant arrays. One such measure is
the use of software RAID by means of the operating system. Another method is to use
specialized storage systems that include NVMe SSD drives and RAID controllers that
combine these drives into arrays of various levels.

Note that due to the use of specialized controllers, creating RAID using storage systems
is more productive than using software RAID.



Eng. Proc. 2023, 33, 54 7 of 8

Experiments in the CKP “Informatics” using Huawei OceanStore Dorado 3000 v6
storage systems showed that the speed of access to block devices on RAID5 based on NVMe
SSD, provided via the iSCSI interface over a 100 Gb Ethernet network, is about 2 GBps. The
access speed to a similar SSD NVMe drive installed in the OSS server is about 1.2–1.4 GBps.

Thus, the use of high-speed storage systems equipped with SSD NVMe drives and
RAID controllers as OST allows you to simultaneously increase the throughput of the
Lustre parallel file system and improve reliability and fault tolerance.

5. Conclusions

A parallel file system is an integral part of a high-performance computing system
designed to solve a wide range of scientific and scientific–practical problems. The parallel file
system effectively prevents the formation of “bottlenecks” that reduce the performance of the
HPC clusters due to delays in disk operations. Its application in the shared research facilities,
providing high-performance computing services, allows to provide sufficient throughput of
the disk subsystem for all scientific tasks performed in parallel by the HPC cluster.

The tasks of processing big data, extracting knowledge, and mathematical modeling
impose different requirements on the organization of data exchange with disk storage when
performed on a group of computing nodes.

At the same time, in order to optimize and increase the efficiency of the functioning of
the HPC cluster as a whole, it is necessary to take measures to adapt data storage patterns
in a parallel file system to the specifics of the applied problems being solved.

An analysis of computational tasks from various fields of science and technology
shows that the requirements for the throughput of access to the file system for various
applied tasks differ significantly. So the tasks of optimization, quantum mechanical calcula-
tions, aerodynamics do not require significant resources of the file system while loading
the computing unit.

The tasks of training neural networks are more demanding on the performance of the
file system, which ensures the timely loading of training data on computing nodes, but the
ratio between data volumes and calculations is not the maximum.

The greatest requirements for the performance of the file system are observed in
the tasks of preparing data for training neural networks and in the tasks of extracting
knowledge (data mining). These tasks require a high-speed exchange of large data arrays
between a large number of data storage and processing nodes.

Depending on the task type and file storage characteristics, a data storage template is
selected. In general, maximizing file system performance requires maximizing the number
of storage objects used.

Thus, when deploying projects designed to solve computing problems that require
high disk efficiency, you should allocate the maximum number of storage elements, mainly
NVMe SSD.

For tasks with medium and low disk intensity, it is enough to allocate a small number
of SAS or SATA storage elements.

Ensuring reliability and fault tolerance through the use of a redundant storage archi-
tecture is provided on data object storage servers or storage systems.
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