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Abstract: Modern trends in the information technology have led to the fact that entire systems of
infrastructure are becoming software-defined. Modern hyper-converged solutions use software-
defined networking and soft switches for the hypervisor networking subsystem. The paper goal is to
study traffic processing in hyperconverged structures with software switching based on OpenFlow
versus traditional approaches. The features of the hyperconverged solutions network infrastructure
are considered, approaches to the study of software-defined environments are described. A model of
the processing traffic internal structure of a converged node, combining the functions of a hypervisor,
a storage system and a switch, is proposed. Interface models reproduced traffic switching with
the traditional approach and with higher-level OpenFlow processing have been developed. The
approaches to the implementation of the developed models based on experimental studies of network
equipment are described. The results of an experimental study of a network node and a synthesized
model are presented. The possibility of implementing the proposed approaches within the specified
accuracy are described.

Keywords: modeling; OpenFlow; switch; traffic; QoS

1. Introduction

Today, cloud infrastructures require ever more flexible approaches and technologies
that involve the transition to more distributed applications, microservice architecture, and
flexible IT models. Modern trends in the development of multi-cloud services lead to
the widespread use of software-defined infrastructure, storage, networks, as well as the
introduction of convergent and hyper-converged services and equipment [1]. Conver-
gence in networks combines the traffic of heterogeneous services on a single technology
stack with a hardware component (traditional switches supporting prioritization, seg-
mentation at levels 2–4, combining several layer 2 protocols), while hyperconvergence is
based on a software-oriented architecture. Hyperconvergence does not exclude the use of
converged technologies in the network stack, but uniform network management across
hypervisors, storage systems, virtual switches and routers, and equipment can greatly
improve the quality of flow control, logical segmentation, security and prioritization. The
use of virtual dedicated channels from source to destination with guaranteed marginal
characteristics based on packet-switched software-defined networks makes it possible to
provide traffic quality of service and security with much lower organizational and configu-
ration costs than on the basis of traditional converged networks [2]. The main feature of
hyper-converged solutions from different manufacturers is the combination of management
of all network devices into a unified software system, and most manufacturers add support
for virtual overlay transport technologies (Overlay Transport), such as VXLAN networks
(Virtual Extensible LAN), Cisco OTV (Overlay Transport Virtualization), as well as various
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overlay networks of virtual infrastructure hypervisors (VMWare NSX-T, Microsoft HNV,
OVN, Cisco ACI), and container orchestrators (swarm overlay network, flannel, k-vswitch,
OVN) [3]. Open cloud solutions (OpenStack, OpenNebula) and container solutions (Docker
Swarm, Rancher, Kubernetes, OpenShift) can use overlay networks through many tech-
nologies through a plug-in system, but the most common is the use of VXLAN solutions
and transmission control through Open vSwitch. The use of Open vSwitch in conjunction
with software-defined networking technologies (both via the OpenFlow protocol and using
ovs-ofctl, ovs-vsctl) allows you to combine a virtual switch and equipment into a single
managed network, as well as make universal traffic management virtual machines and
services running directly on the hardware (bare-metal), for example, software-defined
storage systems (CEPH, drbd9, gluster, NFS, VMWare vSAN). At the same time, studying
the operation of such networks in conjunction with hyperconverged infrastructure is an
open problem, too many factors can affect each element of the infrastructure and, thereby,
performance parameters. One of the ways to comprehensively cover all factors for the
study of networks can be modeling, but it is complicated by a high level of nesting and
mutual dependence of components. The authors of the paper [4] describe the creation of
a test bed for experiments with software-defined networking and the cloud using hyper-
converged SmartX Boxes distributed over several sites. Each SmartX Box consists of several
virtualized functions, which are divided into SDN and cloud functions with the ability to
track resources on a distributed cloud platform. The paper [5] discusses an approach to
automation for the efficient implementation of a variety of services through distributed
hyper-converged blocks towards a converged software-defined infrastructure using the
SmartX automation software environment. Within the framework of the paper [6], the
principle of integrating software-defined networks and hyperconverged architectures is
demonstrated using OpenFlow as a communication protocol and Opendaylight as a con-
troller in the control plane. The authors of [7] note that the hyperconverged architecture has
higher availability and performance when evaluating the provision of services in a cloud
computing environment. The author of the study [8] deals with the issues of improving the
performance of applications in a hyper-converged infrastructure.

2. Theoretical Part

Let us consider one node of hyperconverged infrastructure based on the most common
open solutions, such as KVM hypervisor, virtual switching Open vSwitch and Linux Bridge,
software defined storage (SDS) (block, object, or file SDS), based on the resources of the
same servers on which virtualization is performed (CEPH, Gluster, ScaleIO, SwiftStack,
HDFS and the like). Each hyperconverged infrastructure server contains a computing node
(processor, memory, disks), a Linux operating system, a network part (network cards, an
Open vSwitch, Linux Bridges, veth virtual network cards), a virtualization node controlled
by an external orchestrator, a server node SDS with storage on local disks integrated with
a common storage subsystem (see Figure 1a). Since there are many options for internal
connections (see Figure 1b), it is necessary to foresee and explore all possible options when
creating a model [9].

The main problem of modeling networks with a large number of traffic processing
technologies and ensuring quality of service is a huge number of possible combinations of
various parameters, types and settings of queues, traffic processing policies. Consider the
option of creating a network interface with enabled VLAN functionality, a classifier in both
directions, incoming and outgoing rate limiting through queues, and traffic filtering in both
directions. In this case, the classifier and queues use DSCP; WRED (Weighted Random
Early Detection) is selected as the congestion management policy, and prioritization occurs
through WRR (Weighted Round Robin) for classes other than ef, for which LLQ (Low
Latency Queue) is used. Limiting the amount of incoming traffic also occurs through
WRED removal of packets from the queue with different weights of different classes (Class-
based policing) [9]. The classifier is configured to mark some packets with the classes af11,
af13, af21, af23, ef, and be. The input from the network occurs through a bidirectional mac
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module, the output and input of the upper levels through filters (ACL). This sequence of
actions at the input from the network (decapsulation, classification, bandwidth handling,
labeling, filtering) and at the output to the network (filtering, labeling, bandwidth handling,
queues, encapsulation) was created based on the description of the sequence of actions
Cisco IOS [10] (see Figure 2).

(a) (b)

Figure 1. Server internal organization diagram: (a) component connection diagram; (b) diagram of
possible internal network connections.

Figure 2. The scheme of the packet passing through the network interface.

To model a realistic delay, the created module of the Traffic-Conditioner type was used
to put the ingressTCIN and egressTCOUT components in place. It is used to introduce
a delay in the incoming direction, corresponding to the processing time of the packet
by the switch on the real network. At the same time, the use of other combinations of
queue settings, their marking and connection logic (for example, nested WRR queues) can
significantly complicate the interface model. Using OpenFlow for traffic processing gener-
ally does not affect the interface scheme in terms of operating with queues, but removes
some of the classification and marking, which is now performed at the OpenFlow Data
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Plane level. In the general case, QoS is implemented in OpenFlow only as a classification,
labeling of packets, and measurement of current flow performance [11]. The management
of queue parameters, traffic limiters, and prioritization policies in most implementations is
left for traditional configuration through the mechanisms of the switch operating system
(or the control program, as is the case with Open vSwitch). Some controllers (for example,
OpenDaylight, ONOS, Floodlight) have mechanisms for setting up queues on a certain set
of switches via NETCONF or directly by commands (for example, for OVSDB). However,
this does not solve the problem of creating a model of such equipment. Figure 3 shows the
scheme of the interface in OpenFlow mode, all marking and rate limiting takes place in the
OpenFlow core, but queues and work with them, including prioritization, remain the same.

Figure 3. The scheme of the packet passing through the OpenFlow network interface with QoS support.

To study the operation parameters of a software-defined device over a period of time
T, we denote the given input parameters that describe incoming traffic and current device
settings as Z(t) = {Tra f f ic(t), Device(t)}, ∀t ∈ T, and the measured output parameters,
which include timing, input and output queue parameters, queue statistics, and a snapshot
of device metrics, as Y(t) = {Latency(t), Qoutij(t), Qinij(t), Sij(t), State′i(t)}, ∀t ∈ T Then
the function of mapping input parameters to output parameters will be defined as:

F(t) : Z(t)→ Y(t), ∀t ∈ T (1)

Let us represent the tree of input parameters Z(t) as a linear sweep

Z(t) = {z1(t), z2(t)...zn(t)}, ∀t ∈ T,

where is the number of input parameters in the sweep. Similarly, we represent the tree of
output parameters Y(t) as a linear sweep

Y(t) = {y1(t), y2(t)...ym(t)}, ∀t ∈ T,

where m ∈ N is the number of output parameters in the sweep. The input set of pa-
rameters Z(ti)at∀ti ∈ [Ti−1..Ti) ∈ T should not change, and the duration of the time
interval [Ti−1..Ti) should be sufficient for the required number of measurements of the
output parameters and to achieve stationarity of the probabilistic patterns of the output
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parameters y1(ti), y2(ti)...ym(ti). In such case mapping (1) can be reduced to the form
F(t) = { f1(t), f2(t)... fm(t)} in this way:

f1(ti) : {z1(ti), z2(ti)...zn(ti)} −→ y1(ti)

f2(ti) : {z1(ti), z2(ti)...zn(ti)} −→ y2(ti)

...
fk(ti) : {z1(ti), z2(ti)...zn(ti)} −→ yk(ti)

When modeling, it is necessary to ensure the correspondence of the obtained output
parameters of the device under study Y(ti) and the obtained output parameters of the
model Y∗(t) with the same sets of input parameters. To do this, we find a mapping
F(t) : Z(t)→ Y∗(t), ∀t ∈ T, such that∣∣∣∣∣yj(ti)− y∗j (ti)

yj(ti)

∣∣∣∣∣ < ε, ∀j ∈ [1..m],

where y∗j (ti) ∈ Y∗(ti) are the measured output parameters of the model; ε is the denoted
accuracy. The study of a device with all combinations of input parameters is hampered by
the fact that the number of all possible combinations of parameters depends on the number
and ranges of parameters of specific devices with specific versions of system software, and,
in general, is an NP-complete problem [12]. Therefore, to build a model, the method of
determining indicators for boundary values and a certain number of intermediate values
of each parameter separately will be used, and the dependencies between the parameters
for the maximum possible values will also be studied. This will make it possible to
obtain an interpolation estimate of the values of indicators for the model with an accuracy
determined by the number of intermediate measurements of parameters and the shape of
the dependency curves.

3. Experimental Research

The study of the operation of model devices connected to a network was carried out
on the example of a new experimental segment of the data processing center (DPC) of Oren-
burg State University. Virtual machines in the data center are divided into groups, between
which network access must be excluded. There can be more than a hundred such groups,
depending on the time and needs, and the groups can have their own routers, DHCP
servers, repeating VLANs and VXLAN networks. Therefore, instead of creating overlay
networks using the capabilities built into OpenNebula, it was decided to isolate traffic
through OpenFlow at the physical and data link levels. The OMNeT++ simulation tool with
the INET framework was used as a modeling environment, which is the most suitable tool
for modeling networks with SDN support. A feature of OMNeT++ is the decomposition of
the model to level 1 of the OSI model with maximum detail of all technologies, protocols,
and data formats used. The segment was implemented to provide high-performance data
processing and create a private cloud for educational and production tasks, including
recording and processing video streams, saving Wi-Fi client traffic dumps, creating training
virtual machines, and big data processing tasks. The data center segment includes two
switches that play the role of a distribution layer. These switches connect 10 GbE channels
to each of the seven access switches. Each server connects to two access switches with two
10 GbE links (storage segment and switching segment) and two 1 GbE links (management).
Since the storage system is built on the basis of CEPH, based on the disks of the same
servers that are used to run all virtual machines, the requirements for the storage segment
lead to the need to provide a peak node speed of at least 10–15 Gb/s when exchanging at
the link level and delay. When writing to the storage, duplication occurs on several servers,
in addition, regular data rebalancing and sharding occurs, which significantly increases
traffic. The switching segment is used for inter-network interaction of virtual machines
with external consumers and among themselves. When using distributed neural networks
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and accessing Hadoop-based storages that physically store data on separate drives of the
same servers, the performance requirements for the switching segment also have lower
limits. Figure 4 shows the network topology.

Figure 4. Experimental segment topology.

At the time of research, the experimental segment included seven servers (Xeon Gold,
128 GB of RAM, NVMe SSD, four 10 Gb/s network cards with hardware packet processing)
to host storage and virtual machines, two servers to work only as systems storage, five
access switches (HPE ARUBA 2920), and two distribution switches (HP ProCurve Switch
5406zl with five HP J9309A ProCurve 4-Port 10GbE SFP+ zl modules). Virtual machines
are controlled by the OpenNebula orchestration system, Open vSwitch is used as virtual
switches in hybrid switching mode with proactive OpenFlow mode (rules are installed on
the local server switch by the orchestrator when performing actions with virtual machines or
networks). Using scripts that automate the connection of network components (Figure 1a),
delays in the experimental segment of the data center were investigated at traffic generation
intensity values Traffic(t) at various time intervals t. To do this, after launching all the
necessary components, the script starts intercepting tcpdump traffic with writing to the
tmpfs disk, as well as generating traffic with the trafgen utility at various intensities. During
the experiment, device state snapshots were taken using the SNMP protocol and OpenFlow
metrics. Based on the topology shown in Figure 4, a model of this network was formed
in the OMNeT ++ using standard tools and a study of delays in the model network was
carried out (see Figure 5).

Figure 5. Network model in OMNeT ++.
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With the help of the developed scripts for the automation of the experiment, a study
of all models of network devices and servers that are part of the network under study
was carried out, and models of these devices were synthesized. To study delays on a
network model, a traffic generation plan was synthesized, similar to experiments on
equipment. Figure 6 shows a graphical interpretation of the results of studying network
delay without using queues (on the equipment, queues were minimized to one packet per
queue, multiplexing into one channel was excluded), its model obtained using standard
tools of the OMNeT ++, and also a model obtained by means of the developed software
and hardware complex. The study was carried out under various work scenarios (different
paths shown in Figure 1a) for various traffic generation intensities.

Figure 6. Results of the study of latency in the network and its models.

The delays were introduced by the ingressTCIN module, which interpolated the
received packet processing times during an experimental study to the current state of the
switch and the available enabled settings (VLANs, queues, classifiers, markers). Figure 6
shows the summary results of measuring delays in a real network, a network model
obtained by standard means of the simulation system, and a network model. According to
the results obtained, when using the switch models included in the OMNeT++, it is not
possible to investigate the influence of the frame processing time by the switch on the total
packet transmission delay in the network. Comparison of the results of the study of the
model obtained using the tools of the developed software–hardware complex with the
delays of the experimental segment of the data center showed a coincidence at similar rates
of frame generation within 5%.

4. Conclusions

In this paper, we propose a methodology for studying the processes of traffic flow in
hyper-converged structures with software switching based on traditional approaches and
OpenFlow tables. Interface models were created for traffic switching in the usual way and
with higher-level OpenFlow processing. To obtain the probabilistic-temporal characteristics
of packet processing by equipment, a method for the initial synthesis of the equipment
model with the developed interface model is proposed, and the possibility of traffic passing
along various virtual paths within the virtual infrastructure is also taken into account. The
obtained results of research and modeling showed a significant influence of the settings and
sizes of the OpenFlow tables of virtual infrastructure elements on the package processing
time, including the non-linear form of dependence. The use of interpolation of the results
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of an experimental study in the model to provide the required form of the dependence of
the packet processing time showed high modeling accuracy under similar conditions and
traffic generation intensities within 5%.
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