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Abstract: This paper concerns the anisotropy-based estimation design for sensor networks with
coloured external disturbance. The boundedness criterion of anisotropic norm for estimation prob-
lems in network systems relies on the analysis of multiplicative noise systems in the framework of
anisotropy-based theory. The solution of the considered problem is reduced to a convex optimiza-
tion problem.
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1. Introduction

The estimation problem has remained a fundamental one in control and filtering
theory since the 1960s, when R. Kalman proposed an optimal filtering approach based on
prediction and correction concepts [1]. The other well known H2 and H∞ methods use
different assumptions on both system and input properties in order to design controllers
and/or filters in the presence of measurement noise, exogenous disturbances, system
uncertainties, etc. [2,3]. Each of these theories has its own benefits as well as disadvantages.
For this reason, many attempts to unify and generalize H2 and H∞ theories have been
made over the last 30 or more years [4–6]. Initially solved in Riccati equation terms, the
H2,H∞ and mixedH2/H∞ problems were then solved via linear matrix inequalities (LMI)
techniques [7–9]. This brings the study into the new era of approaches and methods
applicable to practice.

In 1994, I. Vladimirov suggested an approach to generalize (in a stochastic and ro-
bust sense) H2 and H∞ filtering and control theories. This approach takes into account
stochastic disturbance uncertainty described by means of an information criterion called
anisotropy [10,11]. Introducing a certain performance gain, this theory succeeded in gen-
eralizing the mentioned H2 and H∞ theories. The problem of analysis for time-varying
systems was studied in [12], and the filtering problem for this type of system was con-
sidered in [13], where an optimal solution of the filtering problem was obtained in terms
of the Riccati equation solution. Widely used in control theory, the LMI approach was
adapted in anisotropy-based theory later in [14]. In [15], a general case of anisotropic
norm boundedness sufficient conditions for the estimation problem were derived using
forward-time difference LMIs. An anisotropy-based analysis for non-zero disturbances
with constraint on the first and second moments of input disturbance was considered
in [16], and a design was presented in [17].

Despite the fact that many problems have successfully been solved in anisotropy-based
theory, only deterministic linear systems have been the subject of study. The corresponding
analysis for stochastic systems was studied in [18]. It helped to take into account multiplica-
tive noise systems. This kind of system describes financial and population models, mechani-
cal and hybrid systems, sensor networks, etc. The boundedness criterion for the anisotropic
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norm of a multiplicative noise system is suggested in [19]. After that, the anisotropy-based
analysis yields a solution of the estimation problem for time-varying sensor networks. The
case of network systems was studied in [20], and the case of dropouts with corrections was
considered in [21]. Both papers contained a convex optimization approach to calculate the
minimal value of xanisotropic norm upper bound for an input-to-estimation error system.
A multiplicative noise system analysis for non-centered disturbance was described in [22].
A natural continuation of sensor network research is to extend anisotropy-based estimation
for sensor networks with non-centered disturbance, as far as possible.

In this paper, the problem of anisotropy-based estimation for a sensor network system
with non-centered disturbances is considered. The external disturbances are assumed to be
sequences of random vectors with bounded anisotropy and additional constrain on two
stochastic moments are given.

2. Background

The basic concepts of anisotropy-based theory are the anisotropy of a random vector
and the mean anisotropy of a random vector sequence. If a time-varying system with finite
time horizon is considered, then the anisotropy of an extended vector of input is used in the
analysis. Likewise, the mean anisotropy of a random sequence is used when time-invariant
systems are under research.

The anisotropy of a real-valued random vector W with a finite second moment is

defined in [13] as A(W) = inf
λ>0

D( f ||pm,λ) =
m
2

ln
(

2πe
m

E|W|2
)
− h(W), where D is the

Kullback–Leibler information divergence, E| · | is the expectation, f denotes the probability
density function (pdf) of W w.r.t. Lebesque measure in Rm, h(W) = −

∫
Rm

f (w) ln f (w)dw

is the differential entropy of W, and λ is considered to bea positive parameter which de-

fines the following pdf of etalon vectors: pm,λ(x) = (2πλ)−m/2 exp
(
−|x|

2

2λ

)
. The function

pm,λ(x) corresponds to isotropic Gaussian distribution with zero mean and scalar covari-
ance matrix λIm, where Im denotes an m-dimensional identity matrix. The anisotropy of a
random vector has a simple meaning: it shows the measure of the difference between the
pdf of a certain vector and a set of vectors that have isotropic Gaussian pdfs parameterized
by λ. It can be easily calculated that, if random vector has zero mean Gaussian distribution
with covariance matrix Σ, the precise formula for its anisotropy (as given in [12]) is of the
following form:

A(W) = −1
2

ln det
(

mΣ
tr(Σ)

)
.

Anisotropy-based analysis for time-varying systems with non-centered disturbance
was studied in [16,23]. As derived in [24], the anisotropy of an m-dimensional random
vector with expectation µ and covariance matrix Σ is equal to the following formula:

A(W) = −1
2

ln det
(

mΣ
tr(Σ) + |µ|2

)
.

The performance criterion in anisotropy-based theory is caused by using the infor-
mation functional for input disturbance. The anisotropic norm of the linear discrete
time-varying system is induced by another norm. Let us consider the matrix F ∈ Lp×m

of a linear operator mapping for input vectors W into output vectors Z: for random in-
put W ∈ Lm

2 , the output Z ∈ Lp
2 is defined as Z = FW. In this paper, the components

of vector W and matrix F are considered to be mutually independent. The root mean

square (RMS) gain of the matrix F is defined as Q(F, W) =

√
E|FW|2
E|W|2 =

√
tr(ΛΣ)
tr(Σ)

, where

Λ = E|FTF|, Σ = E|WWT|. The supremum of RMS gain coincides with the maximum
singular value of the matrix Λ, and it will further be referred to as the H∞ norm of F:
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sup
W∈Lm

2

Q(F, W) =
√

max
i=1,m

λi(E[FTF]) = ‖F‖∞. If the input vector W has zero mean Gaussian

pdf with scalar covariance matrix, the RMS gain is equal to the stochastic analogue of the

Frobenius norm of matrix F: Q(F, W) =
‖F‖2√

m
=

√
trΛ
m

.

To denote the set of random vectors with anisotropy by a, we use the following
notation: Wa =

{
W ∈ Lm

2 : A(W) 6 a
}

. With that, the anisotropic norm of F is defined
by the following formula:

|||F|||a = sup
W∈Wa

Q(F, W). (1)

Now, let us briefly consider the case of non-centered disturbances, see [16,23] for
more details. If a random vector W is a sum of the zero-mean vector W̃ and the constant
vector µ = E[W], the RMS gain of the system (operator) with such an input is expressed by

the following equation: Q(F, W) =

√
E[|FW̃|2] + E[|Fµ|2]

E[|W̃|2] + |µ|2
. Consequently, the anisotropic

norm of F in this case is defined as follows:

|||F|||a = sup
W∈Wa

√
tr(ΛΣ) + µTΛµ

trΣ + µTµ
. (2)

Since both anisotropy and anisotropic norm are invariant under the scaling of input W,
one can consider only the case when the two following constraints are given: |µ| > τ ∈ [0, 1)
and trΣ 6 σ. In [16,23], it was shown that the considered constrains for the first and second
moments can be equivalently replaced by those that satisfy σ + τ2 = 1. This condition
allows (2) to be modified in the following form:

|||F|||a,τ = sup
Σ=ΣT�0

{
(tr(ΛΣ) + sup

e0�=0
E[|Fe0|2]τ2)1/2 − 1

2
ln det(mΣ) 6 a, tr(Σ) = 1− τ2

}
, (3)

where e0 corresponds to unit vector e0 = µ/|µ|. In (3), the second term inside the supremum
over Σ takes the maximum value when unit vector e0 corresponds to the eigenvector of the
maximum eigenvalue of Λ, hence giving sup

e0�=0
E[|Fe0|2] = ‖F‖2

∞. The first term corresponds

to the problem of local maximum finding of functional tr(ΛΣ) subject to one equality
constraint trΣ = 1 − τ2 and one inequality constraint − 1

2 ln det(mΣ) 6 a. Note that
τ ∈ [0; 1) is assumed to be given. This problem can be solved by means of the Lagrange
method, and all details can be found in [16,23]. Based on [22,23], the problem of anisotropy-
based estimation is studied in this paper for multiplicative noise systems.

3. Problem Statement

In this section, a model of a sensor network with random failures is considered. The
description of the communication scheme for the sensors is associated with an adjacency
matrix of the corresponding communication graph.

Let us consider the following linear discrete time-varying (LDTV) system:

xk+1 = Akxk + Bkwk,
zk = Mkxk + Nkwk,
yj,k = λj,kCj,kxk + Dj,kwk,

(4)

with zero initial condition x0 = 0 and finite-time horizon Nh, i.e., k = 0, 1, . . ., Nh. The state
is denoted by xk ∈ Rnx , the input disturbance wk ∈ Rmw belongs to sequence of random vec-
tors with bounded anisotropy level a of extended input vector W0:Nh = (wT

0 , . . . , wT
n)

T, and
the non-zero expectation |EW0:Nh | > τ and the constrained covariance tr(cov(W0:Nh)) <
1− τ2 are given. For each jth sensor, a measurement yj,k ∈ Rpy is provided. The random
variable λj,k has Bernoulli distribution with given probabilities P(λj,k = 1) = pj and
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P(λj,k = 0) = 1− pj = qj. The output to be estimated is denoted by zk ∈ Rpz . All matrices

Ak, Bk, Mk, Nk, Cj,k, Dj,k, j = 1, n are known for all time instants and have appropriate di-
mensions. The communication scheme is defined by means of an adjacency matrix a with

conditions aji > 0,
n
∑

i=1
aji = 1, ajj = max

i
aji; see [21] for more details.

To implement the results from anisotropy-based analysis to LDTV systems, we will
identify the norm of such a system F with the norm of the corresponding transfer matrix
F0:Nh associated with the mapping W0:Nh 7→ F0:NhW0:Nh = Z0:Nh between fragments W0:Nh
and Z0:Nh of the input and output sequences, respectively, where for the sake of example
Ws:t = (wT

s , wT
s+1, . . . , wT

t )
T for any s 6 t. So, the anisotropic norm |||F|||a of the LDTV

system F operating over a finite-time horizon k = 0, 1, . . . , Nh should be understood as an
anisotropic norm |||F0:Nh |||a of its transfer matrix F0:Nh .

The problem studied in this paper is finding the linear estimation ẑk of output zk for
system (4) using measurements yj,s, s 6 k, such that anisotropic norm of input-to-estimation
error system is bounded by a chosen threshold γ > 0.

4. Main Result

To obtain sufficient conditions of anisotropic norm boundedness for the systems with
multiplicative noises and noncentered disturbances, let us firstly discuss some results
of [16,21–23].

In [16,23], the anisotropy-based analysis problem was studied for non-centered dis-
turbance with constraints on the first and second moments of the input. The central result
is provided by the following statement based on the idea that for computation of the
(a, τ)-anisotropic norm for the case of noncentered disturbance one needs to shift the value
of anisotropy and then calculate the anisotropic norm of the corresponding system with
centered disturbance, making additional corrections in the resulting value.

Lemma 1 ([16]). Let us consider a linear discrete time-varying system F of the form (4) but
without measurements yj,k, j = 1, n, and assume the parameters τ ∈ [0; 1), a > − l

2 ln(1− τ2),
l = mw(Nh + 1) to be given. The (a, τ)-anisotropic norm (3) of the system F is bounded by the given
γ > 0 if there exist γ1 > 0, γ2 > 0, such that |||F|||b 6 γ1, ‖F‖∞ 6 γ2, γ2

1(1− τ2) + γ2
2τ2 6 γ2,

where b = a + l
2 ln(1− τ2).

Insofar as the input-to-estimation error system for the filtering problem is reduced to
a multiplicative noise system form, the conditions of anisotropic norm boundedness are as-
sociated with an anisotropy-based analysis given in [22]. Let us consider the multiplicative
noise system F̃ of the form

xk+1 = (A0,k +
r
∑

i=1
ξi,k Ai,k)xk + Bkwk,

zk = Mkxk + Nkwk,
(5)

with zero initial condition x0 = 0. The matrices Ai,k, i = 0, r, are given, and the dimensions
of matrices are the same as (4). Random variables ξi,k, i = 1, r have the same distribution
with zero mean, and covariances σ2

i , and considered to be independent of each other as
well of the input wk.

Theorem 1. Let us consider an LDTV system F̃ with multiplicative noises (5), and τ ∈ [0; 1)
and a > − l

2 ln(1− τ2), γ > 0 are given. The (a, τ)-anisotropic norm of F̃ is bounded by a given
threshold γ if there exist some γ1 > 0, γ2 > 0 and the parameter q ∈ [0; ||F̃||−2

∞ ), such that the
following inequalities hold true:
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Rk � AT
0,kRk+1 A0,k +

r
∑

i=1
σ2

i AT
i,kRk+1 Ai,k + qMT

k Mk + LT
k S−1

k Lk,

Sk = (Imw − BT
k Rk+1Bk − qNT

k Nk)
−1,

Lk = Sk(BT
k Rk+1 A0,k + qNT

k Mk).

(6)

R̃k � AT
0,kR̃k+1 A0,k +

r
∑

i=1
σ2

i AT
i,kR̃k+1 Ai,k + qMT

k Mk + L̃T
k S̃−1

k L̃k,

S̃k = (Imw − BT
k R̃k+1Bk − qNT

k Nk)
−1,

L̃k = S̃k(BT
k R̃k+1 A0,k + qNT

k Mk),

(7)

N

∑
k=0

ln det S−1
k > m ln(1− τ2) + 2b, (8)

and γ2
1(1− τ2) + γ2

2τ2 6 γ2. Here, b = a + l
2 ln(1− τ2), RNh+1 = 0, R̃N+1 = 0, and matrices

Rk, R̃k, Sk are all positively defined for k = 0, . . . , Nh.

Proof. This theorem immediately follows from the results of [16,22,23].

Theorem 2. The anisotropic norm of the system F̃ (5) with non-centered disturbance wk with
parameter τ ∈ [0; 1) and a bounded anisotropy level of extended vector A(W0:Nh) 6 a is bounded
by a given γ, i.e.,

|||F̃|||a 6 γ,

if the following inequalities

Rk −MT
k Mk ∗ ∗ ∗ . . . ∗

NT
k Mk η2 Imw − NT

k Nk ∗ ∗ . . . ∗
Rk+1 A0,k −Rk+1Bk Rk+1 ∗ . . . ∗

σ1Rk+1 A1,k 0 0 Rk+1 . . . ∗
...

...
...

...
. . .

...
σnRk+1 An,k 0 0 0 . . . Rk+1


� 0,



R̃k −MT
k Mk ∗ ∗ ∗ . . . ∗

NT
k Mk γ2

2 Imw − NT
k Nk ∗ ∗ . . . ∗

R̃k+1 A0,k −R̃k+1Bk R̃k+1 ∗ . . . ∗
σ1R̃k+1 A1,k 0 0 R̃k+1 . . . ∗

...
...

...
...

. . .
...

σnR̃k+1 An,k 0 0 0 . . . R̃k+1


� 0,

(9)

[
η2 Imw −Ψk − NT

k Nk ∗
Rk+1Bk Rk+1

]
� 0. (10)

have positive definite solutions Rk, R̃k, Ψk, k = 0, Nh − 1, with boundary constraints[
RNh
−MT

Nh
MNh

∗
NT

Nh
MNh

η2 Imw − NT
Nh

NNh

]
� 0,

[
R̃Nh
−MT

Nh
MNh

∗
NT

Nh
MNh

γ2
2 Imw − NT

Nh
NNh

]
� 0,

(11)

η2 Imw −ΨNh
− NT

Nh
NNh
� 0, (12)
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and special type inequalities

Nh
∑

k=0
ln det Ψk > 2b + l ln(η2 − γ2

1), (13)

γ2
1(1− τ2) + γ2

2τ2 6 γ2 (14)

hold true, b = a + l
2 ln(1− τ2).

Proof. Inequalities (9)–(12) are derived by using Schur’s complement formula. Inequal-
ity (13) follows from substituting the anisotropic norm computation for the non-centered
input problem for the corresponding one with a centered input and a modified anisotropy
level of the extended input vector, while (14) is related to the boundedness criteria of |||F̃|||a,τ ,
|||F̃|||b, ‖F̃‖∞ for a given system F̃.

For implementing the results of Theorem 2, some transformation of system (4) is
necessary. Let us introduce a set of virtual objects as follows:

xj,k+1 = Akxj,k + Bkwk, xj,0 = 0,
zj,k = Mkxj,k + Nkwk,
yj,k = λj,kCj,kxj,k + Dj,kwk,

(15)

where xj,k ∈ Rnx denotes the virtual state, zj,k ∈ Rpz is the output to be estimated, yj,k ∈ Rpy

denotes measurement of the jth sensor. In this representation, each sensor has its own virtual
dynamics, and the original sensor network is virtually separated to independent objects.

Let us choose an estimation model for every virtual system (15) in the following form:

x̂j,k+1 =
n
∑

i=1
aji(Ak x̂i,k + Hji,k(yi,k − ŷi,k)), x̂j,0 = 0,

ẑj,k =
n
∑

i=1
aji Mk x̂i,k,

(16)

where ŷi,k = piCi,k x̂i,k. Matrices Hji are considered to be found. The input-to-estimation
error system, which is using estimation model (16), has to have a bounded anisotropic norm.

The state estimation error and output estimation error are depicted by the following
notations: x̃j,k = xj,k − x̂j,k, z̃j,k = zj,k − ẑj,k, j = 1, n. The dynamics of each virtual object
error are as follows:

x̃j,k+1 =
n
∑

i=1
aji

(
Aji,kxi,k + Ãji,k x̃i,k + Bji,kwk

)
,

z̃j,k = Mkxj,k −
n
∑

i=1
aji Mk x̃i,k + Nkwk,

(17)

where Aji,k = Akδji − aji

(
Ak + Hji,k

(
λi,kCi,k − piC

p
i,k

))
, Ãji,k = aji

(
Ak − pi Hji,kCi,k

)
,

Bji,k = Bkδji − aji Hji,kDi,k. Hereafter, the Kronecker symbol δji is used. Let us assem-

ble the total vectors, xj,k, j = 1, n, to the extended state vector xT
k =

(
xT

1,k, xT
2,k, . . . , xT

n,k

)T
,

and similarly the extended vectors of state error and output error are denoted as fol-

lows: x̃T
k =

(
x̃T

1,k, x̃T
2,k, . . . , x̃T

n,k

)T
, z̃T

k =
(

z̃T
1,k, z̃T

2,k, . . . , z̃T
n,k

)T
. Hence, the dynamics of the

extended state error and the output error are described by the following system:

x̃k+1 =
(

Ak −Wk − Hk

(
Cλ

k − Cp
k

))
xk +

(
Wk − HkCp

k

)
x̃k +

(
Bk − HkDk

)
wk,

z̃k =
(

Mk −Vk
)
xk + Vk x̃k + Nkwk,
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where matrices are as follows:

Ak = In ⊗ Ak, Bk = [1, . . . , 1]T ⊗ Bk, Mk = In ⊗Mk, Nk = [1, . . . , 1]T ⊗ Nk
Cλ

k = diag
j=1,n

(
λj,kCj,k

)
, Cp

k = diag
j=1,n

(
pjC

p
j,k

)
, Wk = a⊗ Ak,

Hk = block
j,i=1,n

(
aji Hji,k

)
, Vk = a⊗Mk, Dk =

[
DT

1,k, . . . , DT
n,k

]T
.

Notation ⊗ is assigned to the Kronecker product, and the block diagonal and block
matrix are denoted by diag(·) and block(·), respectively.

To derive the dynamics of the input-to-estimation error system, let us define the
extended state vector as ζk = [xT

k , x̃T
k ]

T. Then, the dynamics of the input-to-estimation error
system can be described by the following expression:

ζk+1 = (A0,k +
n
∑

i=1
ξ j,kAj,k)ζk + Bkwk,

z̃k =Mkζk +Nkwk,
(18)

where ξ j,k = λj,k − pj for j = 1, n,Mk = [Mk −Vk Vk], Nk = Nk, Gj,k = diag
i=1,n

δjiCj,k, and

A0,k =

[
Ak 0

Ak −Wk Wk − HkCp
k

]
, Aj,k =

[
0 0

−HkGj,k 0

]
, Bk =

[
Bk

Bk − HkDk

]
.

As one can see, (18) presents the multiplicative noise system dynamics, so the state-
ment of Theorem 2 can be applied to this object. However, inequalities (9) and (10) con-
tain non-linear terms, therefore corresponding variables change should be used to pro-
vide an effective computational algorithm. Let us define the following set of matrices:

Uk =

[
Yk 0
0 Hk

]
, Xk = Rk+1Uk, X̃k = R̃k+1Uk, where k = 0, . . . , Nh and Yk are considered

to be real-valued matrices of corresponding dimensions. So, after the variables change,
inequalities (9) and (10) become of the form

Rk −M
T
kMk ∗ ∗ . . . ∗

N T
k Mk η2 Imw−N T

k Nk ∗ . . . ∗
Rk+1A00,k+XkA01,k −Rk+1B00,k−XkB01,k Rk+1 . . . ∗

σ1XkA11,k 0 0 . . . ∗
...

...
...

. . .
...

σnXkAn1,k 0 0 . . . Rk+1


� 0,



R̃k −M
T
kMk ∗ ∗ . . . ∗

N T
k Mk γ2

2 Imw−N T
k Nk ∗ . . . ∗

R̃k+1A00,k+X̃kA01,k −R̃k+1B00,k−X̃kB01,k R̃k+1 . . . ∗
σ1X̃kA11,k 0 0 . . . ∗

...
...

...
. . .

...
σnX̃kAn1,k 0 0 . . . R̃k+1


� 0,

(19)

[
η2 Imw −Ψk −N

T
k Nk ∗

Rk+1B00,k + XkB01,k Rk+1

]
� 0. (20)

Boundary conditions (11) and (12) do not change.
If the obtained system of inequalities (11)–(14), (19), and (20) has a solution, then the

estimator (16) designed for system (4) satisfies the condition of suboptimality in the sense
of the anisotropic norm. The optimization problem can be stated as follows: γ2 −→ min
over (11)–(14), (19) and (20) w.r.t. Rk, R̃k, Xk, X̃k, η2, Ψk, γ2

1, γ2
2, τ.
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5. Conclusions

In this paper, an estimation problem of a sensor network system is solved using an
anisotropy-based approach. External disturbances belong to sequences of random vectors
with bounded anisotropy levels of the extended input vector. By using virtual objects
for every sensor, the augmented system is introduced and the input-to-error system is
derived. The system is described by multiplicative noise state space description, since
anisotropy-based analysis can be applied. An anisotropic norm boundedness criterion for
the input-to-error system is implemented, and the non-linear system to be optimized is
obtained. Appropriate variables change is used, and the optimization problem becomes
linear. The parameters of the time-varying anisotropy-based estimator are calculated after
proper inverse change when a suboptimal problem is numerically solved. The non-zero
mean of disturbance determines the dimension rising of the convex optimization problem,
since the modification of a previously developed anisotropy-based algorithm was achieved.
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