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Abstract: The work is devoted to the study of methods that are used to control the movement
of an object along a given trajectory. A control method involving an accurate internal model is
proposed. This internal model was built on the basis of the object’s mathematical model and real
object, performed by artificial neural networks. For a limited period of time the model is able to
determine the object state without surveillance system usage. The dynamic model of an unmanned
vehicle was obtained by method developed at the Robotics Center of the FRC CSC RAS. This method
acquires experimental data and performs model identification by means of a neural network. The
trajectory is a set of spatial points generated by the developed real unmanned vehicle simulator.
The control was carried out on the basis of PID-controller and model predictive control method.
The comparison of control methods for a real and virtual unmanned vehicles was conducted in the
simulator developed. The results of field experiments, during which control by internal model was
applied, are presented.
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1. Introduction

Unmanned vehicles control from the initial state to the final one should meet the
desired quality requirements. At the same time, it is necessary to synthesize such control
laws that ensure the achievement of the control goal in the wide class of the uncertainty of
vehicle’s dynamics. To synthesize the required control laws, the unmanned vehicles control
system simulation should be performed. A mathematical model of a real system can be
obtained with the help of well-known identification methods [1,2]. Herein the following
system identification methods are used, ARMAX (autoregressive moving average models
with exogenous inputs) and NARMAX (non-linear ARMAX). These methods allow to
obtain linear and non-linear polynomial functions that model the relationship between
the perception of the robot sensor and its motor response. These methods are extended to
neural network structures [3] and are successfully applied to non-linear unmanned vehicles.

One of the approaches in the field of unmanned mobile systems, such as unmanned
vehicles operating in automatic mode, is aimed at the development of non-linear control
laws for real time trajectories tracking [4–6].

Unmanned vehicles’ real-time trajectory control is usually divided into three sub-tasks,
trajectory generation, position determination, and trajectory tracking.

This paper presents the results of model identification of a real unmanned vehicle.
Kinematic equations of unmanned vehicle describe mass center position (x, y) and direction
of movement (θ). These parameters depend on linear velocity (v) and rotation angle of
front wheels (α). Unmanned vehicle and its kinematic movement control scheme are
presented in Figure 1.
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Artificial neural networks belong to modern model identification methods used in
robotics. Combined with differential equations, ANNs provide satisfying results in real
non-linear dynamics systems identification.

(a) (b)
Figure 1. Unmanned vehicle (a) and its kinematic movement control scheme (b).

The article presents a formal statement of the model identification problem. A univer-
sal strategy for its solution that uses ANNs is proposed. The obtained model, or so-called
the internal one, is applied in a special simulator developed to automate path generation
and the process of obtaining the state of the unmanned vehicle that is conducted in selected
control methods in case of some parametrical changes.

2. Unmanned Vehicle Model Identification

The unmanned vehicle (UV) is built on the basis of an automobile chassis on a scale
of 1:10, has a weight of 1.5 kg and can reach speed up to 10 m/s. The appearance of the
UV is shown in Figure 1a. The front wheels of the UV implement steering, the rear ones
monitor the state of the robot. Figure 1b shows the kinematic movement control scheme of
the unmanned vehicle, where x, y refer to the coordinates; α is the angle of front wheels
rotation; θ is the UV orientation relative to the x axis; L is the distance between the front and
rear axes of the robot; and R is the base point located in the center of the robot’s rear axis.

Experimental data on the vehicle movement was obtained according to a special
technique developed in the Robotics Center of the FRC CSC RAS.

The vehicle model consists of hybrid finite-difference equations of the following form

x(k) =


x(k)
y(k)
θ(k)
v(k)

 =


x(k− 1) + ∆tv(k− 1) cos(θ(k− 1))
y(k− 1) + ∆tv(k− 1) sin(θ(k− 1))
f θ(v(k− 1), θ(k− 1), u(k), ω(k), ∆t)
f v(v(k− 1), θ(k− 1), u(k), ω(k), ∆t)

, k = 1, . . . , K, (1)

where x(k) is a state vector,

x(k) =
[
x(k) y(k) θ(k) v(k)

]T
=
[
x(k) y(k) u(k)

]T , (2)

v(k) is the velocity of the object, θ(k) is the UV orientation relative to the x axis, ω(k) is
the component of control for orientation θ(k), u(k) is the component of control for linear
velocity v(k), ∆t is the time span, f θ(v(k − 1), θ(k − 1), u(k), ω(k), ∆t) and f v(v(k − 1),
θ(k − 1), u(k), ω(k), ∆t) are the outputs of a neural network, K is the number of con-
trol steps.

Object movement is determined by orientation θ(k) and velocity v(k) being predicted
by neural network. The inputs of the neural network include orientation and speed control
signals ω(k) and u(k) along with the previous state of orientation θ(k− 1) and velocity
v(k− 1). At the output, we obtain the current values of orientation θ(k) and velocity v(k).
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The neural network has the following structure

z(l) = ϕ(l)
(

W(l)z(l−1) + z(l)0

)
, l = 1, . . . , L, (3)

where z(l) is the output vector of layer l, ϕ(l)(s) is a vector activation function of layer l,
W(l) is a weight matrix of layer l, W(l) =

[
w(l)

i,j

]
, i = 1, . . . , nl , j = 1, . . . , nl−1,

dimW(l) = nl × nl−1, z(l)0 is a bias of l, z(l)0 =
[
v(k− 1) θ(k− 1) u(k) ω(k) ∆t

]T ,

L is the number of layers, z(L) =
[
θ(k) v(k)

]T , n0 = 5, nL = 2.
Activation function ϕ(l)(s) is applied to each component of the state vector

ϕ(l)(s) =
[

ϕ
(l)
1 (s1) . . . ϕ

(l)
nl (snl )

]T
.

The sought-for parameters of the neural network include the components of the
weight matrix and bias of each layer. The total number of the parameters sought is
∑L

l=1 nl(nl−1 + 1).
The quality criterion for neural network parameter optimization is the root-mean-

square error of state prediction (2)

K

∑
k=1
‖zL(k)− u(k)‖2 → min . (4)

For the experiments the following neural network was used: L = 4, n0 = 5, n1 = n2 =
n3 = 64, n4 = 2. All layers but the last used ReLu as activation function. To find the vector
of optimal neural network parameters the stochastic gradient descent method ADAM was
used [7].

To collect the required amount of data in the entire robot operating control range,
VISLAM system was used. This system is based on RealSense t265 camera, that records
data on control and state vectors at frequency of 20 Hz.

Figure 2 shows a trajectory obtained from a training sample (the light dotted line) and
a trajectory obtained by internal model (1) with a neural network (the solid line).

Figure 2. The trajectories of the vehicle movement on the plane {x, y}.

Figure 3 depicts the change of state vector components v(t) and θ(t) over time. The
light line shows the movement of a real vehicle, the solid one corresponds to the movement
according to the model (1), and the dotted line corresponds to control components.
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Figure 3. The change of state and control components over time.

3. Trajectory Tracking Scheme

To implement motion control along the trajectory, it is necessary to solve the control
synthesis problem [8] and represent control as function that depends on the coordinates
of the state space. In the majority of cases, a trajectory tracking error is calculated and a
control signal, that works out this error, is set.

Depending on the task, the desired trajectory is set as a sequence of points on a plane
or in three-dimensional space, and instead of calculating the distance to the trajectory,
the distance to the points of the desired trajectory is determined. The block diagram of
the unmanned vehicle control system, in which either PID-controller or model predictive
control is used, is shown in Figure 4.

Figure 4. Block diagram of an internal model control system.
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4. Controllers
4.1. Closed-Loop Control

In the steering control loop of the vehicle a P-controller was used. The control signal
had the following form

α = arctan
Lω

v
, (5)

where L is the distance between the axes of the robot, v and ω is the linear and angular
velocities of the robot,

ω =
vk(s) cos(θe)

1− k(s)e
− kθ | v | θe −

(
kev

sin(θe)

θe

)
e, (6)

where k(s) is a path curvature, θe is an error in motion direction, e is a position error, and kθ

and ke are controller coefficients.
Figure 5 shows the results of tracking the desired trajectory using P-controller and an

internal model. The dashed line shows the desired trajectory, and the solid line shows the
trajectory that has been tracked. The dots mark the constraints in the form of gates.

Figure 5. The movement along the trajectory with the help of internal model and P-controller.

4.2. Model Prediction Control

Predictive control is an optimization strategy that has a variety of advantages, such
as accounting constraints imposed on system’s state and control signals, and ability to
work with non-linear objects. The optimal trajectory is the solution to the optimization
problem. Predictive control includes object simulation under various control actions that
ensure current problem solution, for example, bypassing the obstacles or passing through a
gate. Among the resulting set of trajectories, one trajectory is selected according to some
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criterion. As a criterion, the squared error of achieving the goal and the squared control
signal with some weighting factors are often used

J =
L

∑
i=1

wx(ri − xi)
2 +

L

∑
i=1

wu∆u2
i , (7)

where wx and wu are weights, ri is a desired trajectory, xi is a manipulated variable, ui is a
control signal, L is a control horizon.

The goal of predictive control lies in sequential search for optimal control strategy for
a certain time interval that is called control horizon. Each time the first step of the strategy
found is the only one applied. This step completed, the prediction horizon is being shifted
and new optimization starts.

Online optimization taking place at every step has became possible due to the avail-
ability of high-performance computing facilities embedded on the vehicle’s board.

For the control object model (1) and the prediction horizon value equal to 8, the desired
and obtained trajectories are shown in Figure 6.

Figure 6. The movement along the trajectory with the help of internal model and model predic-
tion control.

5. Results

To study the approaches proposed, an environment for unmanned vehicles simulation
based on ROS1 and ROS2 operating systems, has been developed.

Experimental comparison of control methods that apply internal model for real-time
control was conducted, with the problem of unmanned vehicle trajectory tracking served
as experimental domain. The control was carried out on the basis of P-controller and
model predictive control (MPC). The results of field experiments are shown in Table 1.
The difference between the length of the desired trajectory S1 and the length of the path
S2 covered under different velocity v was used as a comparison criterion. The desired
trajectory length was 67.4 m.
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Table 1. Results of field experiments.

Experiment Number Speed v, m/s Deviation When Using
P-Controller S1, m

Deviation When Using
MPC S2, m

1 1.41 4.4 3.5
2 1.12 2.1 1.9
3 0.88 1.6 1.7

According to the experiments the following conclusions may be performed:

1. Control based on P-controller is distinguished by the possibility of using relatively
simple controllers;

2. With both control methods being used at high vehicle speeds, the deviation from the
trajectory increases significantly;

3. High speeds can be achieved if controller parameters are fine-tuned or in case of
applying an intelligent P-controller that adapts to the speeds and curvature of the
trajectory;

4. High-performance computers are needed for MPC.
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