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Abstract: Intelligent systems today are increasingly required to predict or imitate human perception
and behavior. In this, feature-based Machine Learning (ML) models are still common, since collecting
appropriate training data from human subjects for the data-hungry Deep Learning models is costly.
Considerable effort is put into ensuring data quality, particularly in crowd-annotation platforms
(e.g., Amazon MTurk), where fees of top workers can be several times higher than the median. The
common knowledge is that quality of input data is beneficial for the end quality of ML models, though
quantitative estimations of the effect are rare. In our study, we investigate how labeled data quality
affects the accuracy of models that predict users’ subjective impressions—per the scales of Complexity,
Aesthetics and Orderliness assessed by 70 subjects. The material, about 500 web page screenshots,
was also labeled by 11 workers of varying diligence, whose work quality was validated by another
20 verifiers. Unexpectedly, we found significant negative correlations between the workers’ precision
and R2s of the models, for two out of the three scales (r11 = −0.768 for Aesthetics, r11 = −0.644 for
Orderliness). We speculate that the controversial effect might be explained by a bias in the indiligent
labelers’ output that corresponds to subjectivity in human perception of visual objects.

Keywords: web interfaces; intelligent systems; machine learning; image recognition

1. Introduction

One of the implicit assumptions in Machine Learning (ML) is that the data that get
through the preliminary screenings and tweaks to the model training stage are appropriate.
As for ML models that seek to predict or simulate human behavior, such as user behavior
models (UBMs) in the field of Human–Computer Interaction (HCI), the situation is rather
more sophisticated. The actual interaction-related data, which are generally the input
of the predictive UBMs [1], arguably cannot be “bad”, as long as they reflect the human
“imperfection”. However, there are also increasingly important subjective dimensions, from
perceptional “how pleasant is our website design” in HCI to “how likely is it that you would
recommend our service to a friend” in marketing. By definition, the subjective impressions
are usually directly provisioned by human subjects—although indirect methods do exist,
e.g., facial emotion recognition. Correspondingly, Deep Learning is slow to take off in this
field, and an ample share of the models are feature based and rely on labeled data and the
subjective assessments.

There is a general consensus that inaccurately annotated data are a hindrance and
that the labeled data quality does not come for free. In micro-task platforms, such as
Amazon Mechanical Turk (MTurk), filtering of crowdworkers can be carried out by a
reputation that is principally based on the Approval Rate supplied by task requesters [2].
The fees charged by higher-paid workers are about four times above the median ones in
MTurk [3], even though it has been shown that even top workers can be indiligent [4].
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Reputation might have seemed an easy solution to crowd-labeled data quality a decade
ago [2], but the arsenal of methods and tools has been rapidly expanding since then [5],
as we subsequently outline in Section 2.1. The currently mainstream data quality control
methods are majority/group consensus and ground truth, which necessarily imply redundancy
(several workers performing the same task), wasting up to 33% of the output.

Even if data labeling work is carried out by volunteers and is technically free, their
limited effort should be used efficiently too. Although volunteers generally have higher
motivation than crowdworkers, redundancy might still be necessary to reach the certainty
thresholds [6]. Setting the latter is actually a major problem for a requester, which we
believe is not adequately covered in existing studies. Similarly to software debugging,
more is always better, and there is no hard threshold to improving the quality of the data,
only the one advised by practicability. Many developments to improve input data for
UBMs, e.g., the enhanced version of the robust Aalto Interface Metrics (https://github.
com/aalto-ui/aim, accessed on 1 June 2022) [7], are underway with the best intentions.
Unfortunately, estimating the concrete “return on investment” in data quality remains
problematic, as quantitative studies of its end effect in ML are scarce.

In our paper, we explore the relation between the completeness and precision of the
input data produced by 11 human labelers and the quality of the ensuing 33 user behavior
models built for 487 web page screenshots assessed by another 70 participants. Rather
unexpectedly, we find that the significant correlation between the labelers’ precision and the
quality of the models constructed for the subjective scales of aesthetics and orderliness is
negative. We attribute this preposterous result to the bias in indiligent labelers that brings
their output closer to some subjective dimensions of human visual perception. We did
not find any significant correlations for the labeling of completeness—even for complexity,
which is known to be affected by the number of visual elements. Our results question the
traditional data quality measures’ applicability for human-related data, although further
research is necessary.

The outcome has been preliminary reported and discussed at the 2021 Fall Conference
of Ergonomic Society of Korea (ESK). In the current paper, we present the extended version of
our results, referencing some of our previous related publications, such as [8,9]. In Section 2,
we briefly review the research relevant to human behavior data quality in ML and describe
our experiment. In Section 3, we construct the models and analyze the effects of the input
data on their quality. In the final section, we discuss the findings and their possible causes,
and outline directions for further research.

2. Method and Related Work
2.1. Data Quality Control in ML

As noted by philosophers long ago, the concept of good is very subjective. In relation
to ML, it was recently demonstrated that the understanding of “good data” varies consid-
erably for different stakeholders [10]. The concept of quality, though more objective and
operational, is domain specific [11] and multi-dimensional [12]. With respect to data, it
commonly involves the aspects of completeness, consistency, lack of duplicates, accuracy,
timeliness for the purpose, and so on—some researchers identify as many as 20 dimensions.
Since ML is predominantly concerned with precision and recall of the models, it associates
data quality for the most part with completeness and accuracy.

The importance of these two dimensions in data quality was well recognized even
before the ML era, and the related methodologies were classified as the ones helping
“selection, customization, and application of data quality assessment and improvement
techniques” [13]. Currently, the data quality control incorporates techniques for data
collection planning, cleaning, profiling, evaluation, monitoring, etc. About a decade ago,
strong focus in the field was established concerning crowd data, due to rapid advancement
of crowdworking platforms such as Amazon MTurk (2005), microworkers.com (2009),
Yandex.Toloka (2014), etc. The whole family of related meta-tools dedicated to data quality
control emerged, such as CDAS (2012), Crowd Truth (2014), iCrowd (2015), DOCS for
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AMT (2015), and others [9]. A comprehensive review of quality control in crowdsourcing
can be found in [5], where the methods are organized into three major groups: individual,
group and computation based. The former two generally imply involvement of humans in
the assessment of the annotators or of the tasks’ output.

It should be noted though that there has been a certain decrease in research enthusiasm
towards crowd data since then, as the involved disadvantages had been acknowledged [4].
ML and Intelligent Systems came to rely more on unstructured and uncontrolled data
sources [14], see Big Data [11,15] and data scrapped from the web [16]. A recent related
publication carefully catalogs the software tools for data quality measurement and mon-
itoring, listing a whopping 667 of them [17]. All in all, the quantitative engineering of
data quality is better developed in the fields where data generation is easier to control.
A recent example of such a field is IoT (see review in [18]), while the most established one
is industrial data, where datasets are well structured and plentiful. Researchers in the field
of industrial data quality already formulate it as a dataset selection problem and propose,
e.g., the criteria of estimated relative return improvement and estimated action stochasticity [19].
However, those working with human-related data more often than not have no luxury of
choosing between several datasets relevant to their specific problem.

2.2. Human Factor in Data Quality

The comparative rarity of reusing human behavior-related data outside of repro-
ducibility and meta-analysis studies (e.g., [20] using the dataset from [8]) is partially due
to its high value. The latter mainly comes from costly human time needed to generate
or label the data, but its potential economic value may be involved too—think of social
networks users’ behavior data. Another reason that decreases the chance for finding appro-
priate data for a specific problem is that human data are a task too and context-dependent,
and there is never a perfect match of factors and conditions. Moreover, their quality is
arguably less formalizable on the scale from “good” to “bad”, and the emerging concept of
“fitness-for-use” [21] might prove to be more appropriate than “quality”.

In the dawn of the AI/ML era, the human factor in data was rather considered a
nuisance (cf. user needs in the era of mainframes). For instance, 10 reasons for bad data
quality comprehensively listed by Lee et al. in 2006, include “subjective judgments during
data generation” [22]. Lately though, there is more recognition that human-related data are
special, and specific quality dimensions are introduced, such as ethical ones [23]. The latter
are arguably a response to the recently highlighted “inappropriate” behavior of trained
AIs, who started to demonstrate “racist”, “sexist”, or “offensive” behavior [24]—just in
accordance with the patterns they found in human-generated training data.

Still, the urgency of ML methods to describe human behavior is widely recognized, and
UBMs that both incorporate domain knowledge and are trained on practical data is a popu-
lar implementation. The models’ output are certain key performance characteristics—the
examples in HCI field are success rate, time to complete a task, dimensions of subjective
satisfaction, etc. The corresponding input data generally would need to specify the char-
acteristics of the target users and the parameters of a candidate UI [1]. The techniques
for parameterizing the UI can rely on manual labeling, on automated design mining algo-
rithms (see in [25]), or on their combination [9]. Indeed, the algorithms for calculating the
features are already numerous, and the developers put in a considerable effort in improving
them [7]). However, the data quality studies in the field rather focus on adherence to “best
practices” [26] and the reasons leading to “bad” models [27]. Quantitative studies of the
data effect are rare, if any.

So, we undertook the following experimental study to relate the measured dimensions
of the input data quality and the quality parameters for some simple UBMs.
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2.3. The Experiment Description
2.3.1. Material

The material in our experiment was screenshots of website homepages belonging to
universities and colleges from all over the world (but only their English versions). First,
we automatically collected 10,639 screenshots in PNG format using a dedicated Python
script crawling through various catalogs, DBPedia, etc. Then, we manually selected 497
of them for the experiment (see [8] for more detail)—hereafter, references as the UIs. To
ensure better diversity of UI elements, the screenshots were made for full web pages, not
just of the part above the fold or of a fixed size.

2.3.2. Procedure
UI Assessment

In a dedicated online survey (see details in [8]), the participants provided the subjective
assessments of their impressions for each UI, per the three visual perception scales that
we employed:

• How visually complex is the UI: Complexity;
• How aesthetically pleasant is the UI: Aesthetics;
• How orderly is the UI: Orderliness.

Complexity and aesthetics were elected as arguably the most popular dimensions in
studies of subjective visual perception [20]. Orderliness was added mostly for the purpose
of validity control of the assessments, as most studies in HCI are uniform about the positive
correlation of UI regularity with aesthetics and the negative one with complexity. For each
of three the scales, Likert ratings were used (1—lowest, 7—highest). The participants were
instructed to provide their honest subjective assessments and were told that there are no
right or wrong answers. The screenshots were randomly assigned to each participant suc-
cessively, and the completeness of the assessment for all the 3 scales per UI was mandatory
and controlled by the survey software.

UI Labeling

The labelers used LabelImg (Version 1.8.1, from https://github.com/tzutalin/labelImg,
accessed on 1 June 2022), a third-party dedicated software tool that saves the output as XML
files in PASCAL VOC format. They were asked to draw bounding rectangles around UI
elements in the screenshots, as precisely as possible, and to choose one of the 20 pre-defined
classes for the element: image, background image, text, textinput, link, button, etc. (see the
complete list in [9]). The participants were provided with the written instruction on UI
labeling and on technical usage of LabelImg and asked to process as many UI elements
in each UI as possible. The screenshots were distributed among them near evenly, but no
random assignment was performed.

The Labeling Verification

For each UI element in each screenshot, the verifiers could specify the labeling as correct
or incorrect. In addition, for each UI the they were asked to subjectively assess completeness,
i.e., if all the visible UI elements had been labeled, on the scale from 1 (very few elements)
to 100 (all elements). The verifiers had the written instruction with recommendations for
making the correct/incorrect decision, based on the UI elements’ bounding box precision
and the correct specification of its class. To support the verification procedure, we have
developed a custom web-based software. The previously labeled UIs were distributed
among the verifiers near evenly, but without a random assignment.

2.3.3. Subjects

There were 3 groups of human participants, mostly students of Novosibirsk State
Technical University (NSTU), who performed the aforementioned activities:

https://github.com/tzutalin/labelImg
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1. The UI assessment was performed by 70 participants (43 females, 27 males), whose age
ranged from 18 to 29 (mean 20.86, SD = 1.75).

2. The UI labeling was performed a few months later by another 11 participants (6 male,
5 female), with the age ranging from 20 to 24 (mean = 20.5, SD = 0.74).

3. The verification of the labelers’ output was performed a few months later by yet another
20 participants (10 male, 10 female), whose ages ranged from 20 to 22 (mean = 21.1,
SD = 0.45).

All the participants took part in the study voluntarily, and informed consent was
obtained. They had normal or corrected to normal vision and reasonably high experience
in the general usage of IT.

2.3.4. Design

The mean UI assessment ratings per the screenshots on the three scales of complexity,
aesthetics, and orderliness (ScaleC, ScaleA, and ScaleO, respectively) were used as the
output variables for the 3 × 11 = 33 user behavior models that we would construct for each
scale and each labeler.

The input data for the models were 8 factors, whose values we automatically calculated
for each UI from the labeling data, using our dedicated Python script:

1. number of all UI elements,
2. number of text elements,
3. share of the text elements’ area in the screenshot,
4. number of image elements,
5. share of the image elements’ area,
6. number of background image elements,
7. share of the background image elements’ area,
8. share of whitespace (the screenshot area minus all the other labeled elements).

From the 20 labeled classes, we deliberately chose the most visually prominent ones:
text, image and background image, since our experiment implied visual perception of the
material, but no interaction with the UIs—hence, no link, radiobutton, selectbox, textinput,
and so on.

So, our experiment had between-subject design. The main independent variables were
subjective completeness (SC) and Precision, averaged for each of the 11 labelers:

Precision =
correct

correct + incorrect
. (1)

The (derived) dependent variables were the quality parameters (R2s) of the user be-
havior models. We also controlled for another derived variable, the number of screenshots
processed by each labeler (UI).

Our hypothesis was that higher SC and precision, corresponding to better quality of
the labeling data, should result in the better quality of the models (R2s).

3. Results
3.1. Descriptive Statistics

In total, we collected 12705 assessments for the 497 UIs. Further, the 11 labelers
specified 42,716 elements in 495 UIs (see [Table 1] in [9]), and the quality of their work was
evaluated by 20 verifiers. Some UIs had technical problems or incomplete evaluations, so,
we remained with 487 valid UIs (98.0%), for which the descriptive statistics are presented
in Table 1. The first and second names of the labelers are abbreviated in the IDs.
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Table 1. The descriptive statistics per the labelers (M ± SD).

UI Labeling UI Assessment

ID UIs Elements ScaleC ScaleA ScaleO

AA 54 4802 3.67 ± 0.55 4.20 ± 0.86 4.43 ± 0.63
GD 44 3520 3.55 ± 0.56 4.07 ± 0.74 4.47 ± 0.53
KK 44 3927 3.33 ± 0.59 4.32 ± 0.71 4.59 ± 0.57
MA 44 5349 3.60 ± 0.63 4.02 ± 0.76 4.36 ± 0.56
NE 44 4994 3.57 ± 0.65 3.97 ± 0.90 4.34 ± 0.64
PV 43 4544 3.69 ± 0.74 4.34 ± 0.74 4.66 ± 0.58
PE 42 2569 3.69 ± 0.64 3.79 ± 1.07 4.16 ± 0.80
SV 43 3737 3.54 ± 0.63 4.22 ± 0.90 4.46 ± 0.68
ShM 41 1675 3.55 ± 0.71 4.05 ± 0.88 4.43 ± 0.56
SoM 45 3266 3.62 ± 0.73 4.25 ± 0.91 4.44 ± 0.68
VY 43 3630 3.47 ± 0.61 4.07 ± 0.83 4.52 ± 0.67
Total 487 42,013 3.57 ± 0.64 4.12 ± 0.86 4.44 ± 0.64

To check for the homogeneity of the UI assessments per the 11 labelers, we ran
ANOVA tests for all three scales. We found a barely significant effect of ID only on
ScaleO (F10,476 = 1.87, p = 0.047), but not on ScaleC (F10,476 = 1.21, p = 0.284) or ScaleA
(F10,476 = 1.63, p = 0.096). The post-hoc test for ScaleO (Tukey HSD, since there were many
levels of the independent variables) found significant difference (at α = 0.05) only between
labelers PV and PE (p = 0.012). The variances were not different (p = 0.372), so the
ANOVA assumptions were met. Pearson correlations for the assessments per UIs were
highly significant between ScaleA and ScaleO (r487 = 0.771, p < 0.001), as well as between
ScaleC and ScaleO (r487 = −0.145, p = 0.001), but not between ScaleC and ScaleA.

In the verification, 37,053 labeled elements were specified as correct and 4967 as
incorrect, and the mean Precision per labelers was 88.7%, which indicates a reasonably
good work quality. The Pearson correlation between Precision and SC per labelers was
not significant (p = 0.727), which suggests that these two aspects of UI labeling quality
are distinct. The correlation between SC and the average number of correct objects was
significant (r11 = 0.622, p = 0.041), unlike for the number of all labeled objects (r11 = 0.170,
p = 0.618), which reinforces the meaningfulness of the verification.

3.2. The Effect of the Input Data Quality in the Models

To construct the UBMs, we relied on simple linear regression, since we only had a
limited number of data samples (41–54) for each labeler. So, we built 33 models, each
having the same 8 factors calculated from each labeler’s output. The R2s obtained for
the models are presented in Table 2, together with the mean labelers’ quality parameters
obtained from the UI’s verifications.

Since the number of screenshots processed by each labeler (UI) was not exactly the
same (see in Table 1), we checked its correlations with R2s for each of the three scales. We
found that neither of the Pearson correlations was significant at α = 0.05, so treating all
labelers’ models universally is justified.

The subsequent Pearson correlations analysis revealed that the SC did not have a
significant correlation (at α = 0.05) with the models’ quality parameter (R2) for either of the
scales. Even for ScaleC, the correlation was r11 = −0.062 (p = 0.856), whereas the visual
complexity of a user interfaces is known to be influenced by the number of elements [25].
For the sake of checking the conceptual validity of our SC variable, we also checked the
association between the factual average number of elements per UI for each labeler and the
R2s. Again, neither of the Pearson correlations were significant (at α = 0.05), the correlation
for ScaleC being r11 = 0.274 (p = 0.415).
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Table 2. The labelers’ and the models’ quality.

UI Labeling Quality Models’ Quality (R2s)

ID SC Precision ScaleC ScaleA ScaleO

AA 73.0% 89.0% 0.108 0.149 0.114
GD 84.3% 89.9% 0.261 0.345 0.222
KK 82.5% 95.5% 0.261 0.252 0.152
MA 75.1% 72.0% 0.362 0.486 0.295
NE 78.3% 85.1% 0.316 0.488 0.416
PV 81.7% 91.6% 0.363 0.289 0.199
PE 72.0% 77.9% 0.165 0.568 0.611
SV 80.4% 97.4% 0.277 0.176 0.213
ShM 77.5% 89.5% 0.337 0.324 0.215
SoM 56.0% 95.9% 0.304 0.309 0.198
VY 95.5% 92.8% 0.204 0.110 0.169
Avg. 77.8% 88.7% 0.269 0.318 0.255

For precision, we found significant negative correlations with the R2s for ScaleA
(r11 = −0.768, p = 0.006) and ScaleO (r11 = −0.644, p = 0.032), but not for ScaleC
(r11 = −0.051, p = 0.883). Recognizing the possible inaccuracy of our quality measures,
we tried treating R2 and the precision as ordinal variables—this is rather practical, since
task requesters are often interested in only accepting the output from the best labelers.
However, the results did not change very much for Kendall’s tau-b correlation measure:
τ11 = −0.491, p = 0.036 for ScaleA and τ11 = −0.418, p = 0.073 for ScaleO.

4. Discussion and Conclusions

Seeking to explore the effect of input data quality, we undertook an experimental
study with 101 human participants and 497 web UIs. Our assumption was that better
quality of the UI labeling should result in better quality of UBMs.

Contrary to our expectations, we found significant negative correlations between the
labeling quality parameters and the resulting models’ quality (see Table 2) for the subjective
impression dimensions of aesthetics (r11 = −0.768) and orderliness (r11 = −0.644). Before
deciding to report the negative research results in the current paper, we revisited the possi-
ble biases. However, the following considerations re-enforce the validity of our findings:

1. Invalid UI assessment: there was almost no significant difference in the distribution of
the ratings per the labelers.

2. Invalid UI labeling: dimensions of precision (88.7%) and SC (77.8%) indicated high
work quality and were distinct.

3. Invalid Verification: SC was correlated (r11 = 0.622) with the number of correct objects,
but not with the number of all objects.

4. Invalid subjective impressions scales: as expected, ScaleA and ScaleO had significant
positive correlation (r487 = 0.771), while ScaleC and ScaleO had significant negative
correlation (r487 = −0.145). The relation between ScaleA and ScaleC was more contro-
versial, as known from the literature [20], and we did not find a significant correlation.

5. Imperfection in quality measurement: we tried the objective measure for SC (elements
per UI) and ordinal scale correlation (Kendall’s tau-b) for Precision, but there were no
major changes in the outcomes.

6. Uncontrolled differences in the models: the sample sizes varied from 41 to 45 (and even to
54 for one of the labelers), but there was no correlation between UI and the models’ R2.

The discovered negative correlations between the labelers’ precision and the quality
of the resulting models are not entirely clear to us, and we do not yet have a convincing
explanation. We would like to note that the effect was found for the scale of aesthetics
and the related scale of orderliness, but not for the less subjective scale of complexity. It is
believed that aesthetics judgements for visual objects are rather high level, involving the
factors of layout, visual hierarchy, colors, etc. Individual elements are grouped according
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to Gestalt principles, and imprecisions and omissions might even contribute to that—think
of an Impressionist painting. Correspondingly, we might speculate that the indilligent
workers would have a bias towards picking the UI elements and labeling them in a way
matching the actual human perception. However, a much closer look at their output would
be required before making any justified conclusions.

Among the limitations of our study, we see the relative minimalism of the linear
regression UBMs. We only employed eight factors, and often they would not even be
significant in the models. Correspondingly, the absolute quality levels of some models
were rather modest, while the average R2 per the 33 models turned out to be 0.281. The
latter is arguably acceptable for our small-scale study that deliberately incorporated the
potentially low-quality input data. For instance, in our another study with the same set of
university websites screenshots, R2s ranged from 0.105 to 0.248 (similarly, aesthetics had
the highest R2 of the three scales) [8]. However, recognizably, there the number of factors
was smaller, and the number of samples was higher. In any case, in the current study we
were interested in the relative values and never intended to use the models in production.

Our further research prospects involve experimentation with more labelers and a more
diverse set of the web UIs. Having collected more data, we plan to employ artificial neural
network (ANN) models, instead of the simple linear regression ones. ANNs are known as
universal approximators and can naturally handle systematic bias in data.
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