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Abstract: This paper considers the problem of controlling a mobile robot in the presence of circular
obstacles. To solve this problem, it is proposed to use the previously suggested principle of dividing
permissible trajectories into a sequence of rectilinear sections and arcs of circles that are the boundaries
of circular obstacles. The conditions for the solution based on this principle of optimality are obtained.
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Suppose that the problem of controlling a mobile robot is solved using the principle
of dividing feasible trajectories [1]. In the case of the phase space R2, this principle is
an alternative to the classical optimal control theory based on the maximum principle [2].
According to this principle, a connected graph is first constructed, then the shortest path on
the graph is searched. Taking into account that it is not the distance between the vertices
that is used as the edges of the graph, but rather the minimum time rewuired for the
robot to travel along the edge, we can assume that the time-optimal problem has been
solved. However, this is true only under the essential condition that the robot, in bypassing
a circular obstacle, always moves along the border of the obstacle, i.e., that the minimum
allowable radius of curvature of the route is selected on the turn. Nevertheless, there is
doubt that such a choice is always optimal in terms of performance. This is clearly seen in
the example of auto racing, when, in seeking to overtake an opponent, the driver tries to
avoid heavy braking on a curve, instead choosing a larger radius of curvature. If the driver
chooses too high a speed at this point, slippage may occur, i.e., loss of grip with the surface
of the track, resulting in displacement in the direction of the centrifugal force of inertia or
even in the vehicle overturning.

On this basis, let us consider the main factors influencing the reasonable choice of
the radius of curvature for the trajectory of the device when bypassing a circular obstacle.
As already noted, an object moving along the arc of a circle is affected by the so-called
centrifugal force of inertia F, which acts along the radius from the center of the circle and is
calculated by the formula

F = mω2r,

where m is the mass of the object, ω is its angular speed, and r is the radius of the circle.
This force is opposed by the force G of adhesion to the surface of the highway acting in the
opposite direction, which is determined by weather conditions, the condition of the road
surface, and the wheels of the car or robot.

Let us consider a concrete example (see Figure 1) in which a controlled device must
move from point A to point B while bypassing a circular obstacle of radius r1 (a circle of
dark color) or an obstacle of radius r2 > r1 (a circle of light color).

For simplicity, assume that the distances from points A and B to the center of the circles
are the same and are equal to S. The points C, D, M, and N are the tangent points of the
lines drawn from A and B to the small and large circles. Let us define the conditions under
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which, from the point of view of time consumption, it is preferable to bypass a circular obstacle
along an arc of a small radius or along an arc of a large one, provided that m1 = m2 = m and

Fi = mω2
i ri = G, i = 1, 2, (1)

i.e., the passage of the turn is guaranteed against slippage.

Figure 1. Passage of a vmrage with a different radius.

Let r2 = γr1, γ > 1. Note that the coefficient γ cannot be arbitrarily large, as at
γ > S/r1 point A already falls inside the circle and the task loses its meaning. Due to the
symmetry of the tracks in both cases with respect to a straight line passing through the
center of the circles parallel to the ordinate axis, we estimate the time of passage of the left
half of the trajectories. Let us first determine the time spent on moving along the arcs of
circles. Suppose that the linear speed of motion along a small arc, corresponding to the
fulfillment of the condition (3) at i = 1, is equal to v1 = v− and determines the feasible
linear speed v2. It follows from (3) that ω2 = ω1

√
1/γ, i.e., ω2 < ω1. As is well known,

vi = ωiri, i = 1, 2; therefore, v2 = ω2γr1 = ω1r1
√

γ = v1
√

γ > v1 = v−.
It is easy to see that the angles based on the half-arcs of the circles are equal to

α1 = arcsin (r1/S) and α2 = arcsin (γr1/s), respectively. Then, the lengths of the arcs them-
selves are s1 = r1α1 and s2 = γr1α2. Due to the uniform motion along these arcs with speeds
v1 and v2 = v1

√
γ, we obtain expressions for time t11 = r1α1/v1 and t12 = r1

√
γα2/v1. Thus,

∆T1 = t12 − t11 =
r1(
√

γα2 − α1)

v1
> 0, (2)

as the expression in parentheses is obviously positive.
Now, let us estimate the time for the device to pass straight-line line break sections

of the route to the points of contact C and M. Recall that, according to the assumptions,
the robot starts moving at point A at a speed of v+, and should arrive at the touch point at
a speed of vi, i = 1, 2. Let us first determine the time spent in both cases on braking, which
we denote by t2i, i = 1, 2. We have t2i = (v+ − vi)/|u−|, i.e.,

∆T2 = t22 − t21 =
v+ −√γv1

|u−| − v+ − v1

|u−| =
(1−√γ)v1

|u−| , (3)

meaning that in this case the distance traveled by the robot during braking is equal to
di = (v+ − vi)

2/(2|y−|). Thus, with the maximum speed v+, the robot travels the distance
S cos αi − di, with the time spent on this task being

t3i =
1

v+
(S cos αi − di) =

1
v+

(
S cos αi −

(v+ − vi)
2

2|u−|

)
.

Hence ,

∆T3 = t32 − t31 =
S(cos α2 − cos α1)

v+
−

(v+ −√γv1)
2

2v+|u−| +
(v+ − v1)

2

2v+|u−| . (4)
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Thus, it follows from (4)–(6) that in both cases the difference in the time taken by the
device to pass half of the trajectory is expressed by

∆T =
r1(
√

γα2 − α1)

v1
+

(1−√γ)v1

|u−| +

+
S(cos α2 − cos α1)

v+
−

(v+ −√γv1)
2

2v+|u−| +
(v+ − v1)

2

2v+|u−| =

=
r1(
√

γα2 − α1)

v1
+

S(cos α2 − cos α1)

v+
+

(1− γ)v2
1

2v+|u−| .

(5)

Let us now evaluate the second term in this expression. Taking into account that
sin x < x for x > 0, and assuming that α1 + α2 < π, we have

S(cos α2 − cos α1)

v+
= − 2S

v+
sin

α2 + α1

2
sin

α2 − α1

2
>

> − S
v+

sin
(

arcsin
r1

S

)
(α2 − α1) = −

r1

v+
(α2 − α1).

Therefore,

∆T >
r1(
√

γα2 − α1)

v1
− r1

v+
(α2 − α1) +

(1− γ)v2
1

2v+|u−| >

>
r1(α2 − α1)

v1
− r1

v+
(α2 − α1) +

(1− γ)v2
1

2v+|u−| =

= r1(α2 − α1)

(
1
v1
− 1

v+

)
+

(1− γ)v2
1

2v+|u−| .

(6)

Let v+ = θv1, θ > 1. Then, the last expression in (8) takes the form

∆T >
r1(α2 − α1)(θ − 1)

θv1
+

(1− γ)v1

2θ|u−| ;

moreover, the right side of this inequality takes a positive value when

γ < 1 +
2r1(α2 − α1)|u−|(θ − 1)

v2
1

. (7)

Obviously, the estimate for the second half of the route takes the same form (9) with
the replacement of |u−| by u+. Thus, the following statement is true.

Theorem 1. Assume that the coupling force G and the maximum speed v1 when passing a turn
along the minimum allowable radius r1 are known. Then, ∆T > 0 for any γ satisfying the inequality

1 < γ < 1 +
2r1(α2 − α1)ũ(θ − 1)

v2
1

,

where ũ = min{|u−|, u+}.

Thus, with a sufficient natural condition for the parameter γ, the solution of the time-
optimal problem based on the principle of trajectory division is optimal. This is confirmed
by computational experiments.
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