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Abstract: Bilateral haptic teleoperation (BHT) has been the center of interest for researchers for over
half a century. It is a type of cutting-edge technology that enables the operator to transmit touch
sensations over the internet to any part of the globe. The BHT suffers from issues such as stability and
transparency due the presence of network latency, jitters, and device impedance. In this paper, we
designed an optimized network solution for bilateral haptic teleoperation. In this regard, successful
long-distance haptic teleoperation experiments were performed with a pair of haptic devices, i.e.,
a Phantom Desktop (TouchX) and a Novint Falcon device, to test the robustness and versatility of
the framework.

Keywords: haptic; networking; bilateral; user datagram protocol; control buffer; generalized
teleoperation; Phantom Desktop; TouchX; high-level network controller

1. Introduction

Over the past 50 years, we have witnessed an increased use of bilateral haptic teleoper-
ation systems in numerous fields, e.g., underwater exploration, space investigation, medical
surgeries, military demining, etc., by enabling human users to perform complex, remote,
or even unsafe tasks at a certain distance [1,2]. The bilateral haptic teleoperation system
consists of a master and slave device connected over the network via a communication
channel. In bilateral teleoperation, both the master and the slave aim to perform motion
synchronization. The environment force is indirectly reflected by deploying a firm coupling
between the master and the slave (using a virtual spring, damper, etc.), thereby reflecting
the slave dynamics to the operator by means of the master [3].

Haptic data generally comprise of two interactive parameters, i.e., the position (includ-
ing the cartesian position, velocity, acceleration, etc.) and the force (including the torque,
momentum, damping force, etc.). The positional data is used to exchange the orientation
and state of the haptic device operation, and are also utilized to calculate the force and
velocity via differentiation methods [4]. The instances of the haptic data packets are shown
in Figure 1

The performance of the haptic teleoperation systems is directly related to the per-
formance of the network. Haptic data transmitted over the network/internet is highly
susceptible to the network latency, delay, delay jitter, and the bandwidth of the network [5].
In this paper, we designed a control buffer, and deployed it using the user datagram proto-
col (UDP), along with a high-level controller. To analyze the performance of the designed
framework, significantly long-distance haptic teleoperation experiments were performed
from HHRCM-Lab (NCRA-NEDUET), Karachi, Pakistan, including a 7000 km experiment
with an average round-trip time (RTT) delay of 280 ms.
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performed from HHRCM-Lab (NCRA-NEDUET), Karachi, Pakistan, including a 7000 km 
experiment with an average round-trip time (RTT) delay of 280 ms. 

This paper is structured as follows. In Section 1, the abstract and introduction are 
discussed, Section 2 describes the teleoperation and network framework, Section 3 
describes the experiment, and Section 4 contains the results and conclusions. 

2. Teleoperation and Network Framework 
Haptic teleoperation systems need a robust communication interface between 

human operators and robotic systems. 
Such teleoperation systems enable the human operator to experience the feeling of a 

real environment, i.e., to remotely control and operate devices and objects with their own 
hands by having the real-time feedback of these manipulations and the environment [6]. 
Figure 1 and Figure 2 show the control design architecture and block diagram of bilateral 
haptic teleoperation systems, respectively. 
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Figure 1. Control architecture of the bilateral haptic teleoperation framework. 

The equations below show the master and slave dynamic model of the haptic 
teleoperation system [7]. Equations (1) and (2) describe the master and slave dynamics, 
respectively.  
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Figure 2. Block diagram of bilateral haptic teleoperation (position–force (PF) architecture). 

Haptic data need to be transmitted bilaterally over the network, maintaining the 
stability and transparency of the system. To achieve this, connection-oriented and 

Figure 1. Control architecture of the bilateral haptic teleoperation framework.

This paper is structured as follows. In Section 1, the abstract and introduction are
discussed, Section 2 describes the teleoperation and network framework, Section 3 describes
the experiment, and Section 4 contains the results and conclusions.

2. Teleoperation and Network Framework

Haptic teleoperation systems need a robust communication interface between human
operators and robotic systems.

Such teleoperation systems enable the human operator to experience the feeling of a
real environment, i.e., to remotely control and operate devices and objects with their own
hands by having the real-time feedback of these manipulations and the environment [6].
Figures 1 and 2 show the control design architecture and block diagram of bilateral haptic
teleoperation systems, respectively.
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The equations below show the master and slave dynamic model of the haptic teleoper-
ation system [7]. Equations (1) and (2) describe the master and slave dynamics, respectively.

Mm
..
xm + Bm

.
xm = fm + fh (1)

Ms
..
xs + Bs

.
xs = fs − fe (2)

Haptic data need to be transmitted bilaterally over the network, maintaining the stabil-
ity and transparency of the system. To achieve this, connection-oriented and connection-less
internet protocols, i.e., the Transmission-Controlled Protocol (TCP) and the User Datagram
Protocol (UDP), are used. In the designed framework, the UDP is deployed in order to
ensure the dissolute transmission of haptic data.
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2.1. User Datagram Protocol (UDP) and Control Buffer

The UDP, or the user datagram protocol, is a transport layer protocol according to the
TCP/IP model. It is a connection-less protocol, in which the server and client communicate
with each other using a dedicated IP and port number [8]. Haptic data are sent over the
network in the form of data packets (datagrams), as demonstrated in Figure 3. These
packets are sampled significantly and sequenced using the designed buffer, which ensures
the swift and secure transmission of packets in the haptic teleoperation.
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2.2. High-Level Controller

In bilateral haptic teleoperation, there is a trade-off between the transparency and
stability of a system [1,3]. To maintain the stability of a system, a high-level passivity-based
controller is deployed at the server end during haptic teleoperation. In order to improve the
transparency and quality of the feedback, the controller is tuned at certain specific values
of damping and stiffness, i.e., c1, Kp, etc.

3. Experimental Setup

The experiment was carried out using the serial structured haptic device, a Phantom
Desktop (TouchX) connected with Intel core i7 11th Gen PC at the master end, and the
parallel-structured haptic device, a Novint Falcon device connected with Intel core i7 10th
Gen Laptop. The network adopted for the experiment was a wired wide area network
(WAN) using dedicated IP and a port number, and the devices were at a long distance
(7000 km) at the server end and a wireless WAN (eduroam) was used at the client end. The
experiment consisted of performing long-distance stable teleoperation for multi-degree of
freedom tasks using haptic devices and ensuring significant stability, viable feedback, and
the efficient depiction of force position parameters over the interactive GUI. Figure 4 shows
the hardware setup of the experiment.
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4. Results 
Long-distance haptic teleoperation was performed using the force–position 

architecture. The deployed framework enhanced the robustness and transparency of the 
system. An average RTT delay of 280 ms was observed, while the maximum delay was 
620 ms during an uninterrupted 30 min experiment. Results in terms of position 
coordinates before and after contact with the environment were recorded with stable and 
improved performance. Figure 5 shows position data graph (x, y, z) coordinates, before 
and after the contact point with the environment (client-side human operator). 
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Figure 4. Long-distance haptic tele-operation setup. (a) Client-side teleoperator. (b) Server-side
teleoperator.

4. Results

Long-distance haptic teleoperation was performed using the force–position architec-
ture. The deployed framework enhanced the robustness and transparency of the system.
An average RTT delay of 280 ms was observed, while the maximum delay was 620 ms
during an uninterrupted 30 min experiment. Results in terms of position coordinates
before and after contact with the environment were recorded with stable and improved
performance. Figure 5 shows position data graph (x, y, z) coordinates, before and after the
contact point with the environment (client-side human operator).
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5. Conclusions

Long-distance haptic teleoperation was performed with improved robustness and
stability, including hardware and software experiments (emulated synchronous and asyn-
chronous delays) based on the versatility of the framework with several haptic devices
over different networks. Further work is being performed to enhance the adaptive control
of haptic data packets.
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