#
Watermark Embedding Scheme with Variance of Chromatic Components^{ †}

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Steps of the Embedding Scheme

- Converting color images into international commission on illumination (CIE) color spaces, such as Luv and La*b*;
- Dividing images into 8 × 8 blocks;
- Transforming the chromatic components into sequency domain;
- Calculating the variance of the sequency domain coefficients;
- Setting the threshold value for the variance;
- Selecting the watermark coefficients from the spatio-chromatic coefficients on the bases of variance as shown in Figure 2;
- Generating the watermark bits zero and one;
- Inserting the watermark into the host image according to binary bits and variance;
- Taking inverse transforms of the watermarked image;
- Converting into an RGB image.

#### 2.2. Complex Hadamard Transform

#### 2.2.1. Sequency-Ordered CHT

#### 2.2.2. Conjugate Symmetric SCHT

## 3. Embedding Process

## 4. Decoding Process

## 5. Discrete Cosine Transform

- Read the actual image and divide it into 8 by 8 blocks that do not overlap;
- Each non-overlapping block’s forward DCT should be calculated;
- The highest coefficient selection criteria and HVS block selection criteria are applied;
- Add a secret image to the relevant frequency coefficient;
- Each block undergoes an inverse DCT transformation.

## 6. Result and Discussion

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Hernandez, J.R.; Amado, M.; Perez-Gonzalez, F. DCT-domain watermarking techniques for still images: Detector performance analysis and a new structure. IEEE Trans. Image Process.
**2000**, 9, 55–68. [Google Scholar] [CrossRef] [PubMed] - Molina, J.; Ponomaryov, V.; Reyes, R.; Sadovnychiy, S.; Cruz, C. Watermarking Framework for Authentication and Self-recovery of Tampered Colour Images. IEEE Lat. Am. Trans.
**2020**, 18, 631–638. [Google Scholar] [CrossRef] - Shen, X.; Ni, Z.; Yang, W.; Zhang, X.; Wang, S.; Kwong, S. Just Noticeable Distortion Profile Inference: A Patch-Level Structural Visibility Learning Approach. IEEE Trans. Image Process.
**2021**, 30, 26–38. [Google Scholar] [CrossRef] [PubMed] - Gong, Q.; Wang, Y.; Yan, X.; Liu, L. Efficient and Lossless Polynomial-Based Secret Image Sharing for Color Images. IEEE Access
**2019**, 7, 113216–113222. [Google Scholar] [CrossRef] - Su, Q.; Liu, D.; Yuan, Z.; Wang, G.; Zhang, X.; Chen, B.; Yao, T. New Rapid and Robust Color Image Watermarking Technique in Spatial Domain. IEEE Access
**2019**, 7, 30398–30409. [Google Scholar] [CrossRef] - Xiong, X. Novel Scheme of Reversible Watermarking with a Complementary Embedding Strategy. IEEE Access
**2019**, 7, 136592–136603. [Google Scholar] [CrossRef] - Liu, Y. On the Concatenated Transmission Scheme with the Low-Complexity Symbol-Level Watermark Decoder for Recovering the Synchronization. IEEE Access
**2019**, 7, 160927–160933. [Google Scholar] [CrossRef] - Solachidis, V.; Pitas, I. Watermarking polygonal lines using Fourier descriptors. IEEE Comput. Graph. Appl.
**2004**, 24, 44–51. [Google Scholar] [CrossRef] [PubMed] - Li, D.; Zhang, C.; Liu, H.; Su, J.; Tan, X.; Liu, Q.; Liao, G. A Fast Cross-Range Scaling Algorithm for ISAR Images Based on the 2-D Discrete Wavelet Transform and Pseudopolar Fourier Transform. IEEE Trans. Geosci. Remote Sens.
**2019**, 57, 4231–4245. [Google Scholar] [CrossRef] - Lee, G.; Choe, Y. Image Compression Based on a Partially Rotated Discrete Cosine Transform with a Principal Orientation. IEEE Access
**2021**, 9, 101773–101786. [Google Scholar] [CrossRef] - Zheng, P.; Huang, J. Efficient Encrypted Images Filtering and Transform Coding with Walsh-Hadamard Transform and Parallelization. IEEE Trans. Image Process.
**2018**, 27, 2541–2556. [Google Scholar] [CrossRef] [PubMed] - Wu, J.; Wu, F.; Dong, Z.; Song, K.; Kong, Y.; Senhadji, L.; Shu, H. Fast Gray Code Kernel Algorithm for the Sliding Conjugate Symmetric Sequency-Ordered Complex Hadamard Transform. IEEE Access
**2018**, 6, 56029–56045. [Google Scholar] [CrossRef] - Aung, A.; Ng, B.P.; Rahardja, S. Sequency-Ordered Complex Hadamard Transform: Properties, Computational Complexity and Applications. IEEE Trans. Signal Process.
**2008**, 56, 3562–3571. [Google Scholar] [CrossRef] - Wu, J.; Wang, L.; Yang, G.; Senhadji, L.; Luo, L.; Shu, H. Sliding Conjugate Symmetric Sequency-Ordered Complex Hadamard Transform: Fast Algorithm and Applications. IEEE Trans. Circuits Syst. I Regul. Pap.
**2012**, 59, 1321–1334. [Google Scholar] [CrossRef] - Perez-Daniel, K.R.; Garcia-Ugalde, F.; Sanchez, V. Watermarking of HDR Images in the Spatial Domain with HVS-Imperceptibility. IEEE Access
**2020**, 8, 156801–156817. [Google Scholar] [CrossRef] - Bae, S.; Kim, M. A Novel Generalized DCT-Based JND Profile Based on an Elaborate CM-JND Model for Variable Block-Sized Transforms in Monochrome Images. IEEE Trans. Image Process.
**2014**, 23, 3227–3240. [Google Scholar] [PubMed] - Seo, S.; Ki, S.; Kim, M. A Novel Just-Noticeable-Difference-Based Saliency-Channel Attention Residual Network for Full-Reference Image Quality Predictions. IEEE Trans. Circuits Syst. Video Technol.
**2021**, 31, 2602–2616. [Google Scholar] [CrossRef] - Khan, M.F.; Monir, S.M.; Naseem, I.; Khan, B.M. Adaptive just-noticeable difference profile for image hashing. Comput. Electr. Eng.
**2021**, 90, 106967. [Google Scholar] [CrossRef] - Guoqing, X.; Rongyan, Z. Shape description and retrieval using Conjugate Symmetric Sequency-Ordered Complex Hadamard Transform. In Proceedings of the 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 18–20 December 2015; IEEE: New York, NY, USA; pp. 330–333. [Google Scholar]
- Aung, A.; Ng, B.P.; Rahardja, S. Conjugate Symmetric Sequency-Ordered Complex Hadamard Transform. IEEE Trans. Signal Process.
**2009**, 57, 2582–2593. [Google Scholar] [CrossRef] - Joseph, H.; Rajan, B.K. Image Security Enhancement using DCT & DWT Watermarking Technique. In Proceedings of the 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28–30 July 2020; IEEE: New York, NY, USA; pp. 0940–0945. [Google Scholar]

**Figure 4.**(

**a**) Original baboon 512 × 512 images, watermarked and magnified using (

**b**) SCHT transform; (

**c**) CS-SCHT transform; (

**d**) DCT transform.

Watermarking Technique | PSNR |
---|---|

CS SCHT | 94.0070 |

SCHT | 92.0482 |

DCT | 87.9364 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dur-e-Jabeen; Waqqas, F.; Shaukat, H.; Fatima, M.; Iftikhar, R.; Khan, T.
Watermark Embedding Scheme with Variance of Chromatic Components. *Eng. Proc.* **2023**, *32*, 26.
https://doi.org/10.3390/engproc2023032026

**AMA Style**

Dur-e-Jabeen, Waqqas F, Shaukat H, Fatima M, Iftikhar R, Khan T.
Watermark Embedding Scheme with Variance of Chromatic Components. *Engineering Proceedings*. 2023; 32(1):26.
https://doi.org/10.3390/engproc2023032026

**Chicago/Turabian Style**

Dur-e-Jabeen, Faiza Waqqas, Habib Shaukat, Maria Fatima, Rumaisa Iftikhar, and Tehmina Khan.
2023. "Watermark Embedding Scheme with Variance of Chromatic Components" *Engineering Proceedings* 32, no. 1: 26.
https://doi.org/10.3390/engproc2023032026