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Abstract: In traditional passive optical network (PON) neighboring, optical network units (ONUs)
cannot communicate directly but through optical line terminals, resulting in propagation delays,
security hazards and unnecessary use of upstream and downstream bandwidth. Inter optical net-
work unit communication (IOC) can be a promising solution for these problems. IOC is mostly
demonstrated with the help of dedicated or tunable transceivers increasing the cost of the system
and making it complex. Transceiver sharing is also demonstrated in the literature but this will
be a bandwidth-inefficient technique. In our paper, the simultaneous transmission of IOC signal
and upstream signal is demonstrated in a time-division-multiplexed PON using single transmitter
and self-phase modulation-based wavelength convertor at each ONU that converts the upstream
wavelength of 1310 nm to 1310.6 nm when IOC signal is being transmitted by that ONU; at the same
time another ONU can transmit the upstream data at 1310 nm which results in efficient bandwidth
utilization with less delays compared to the traditional PON. In our proposed design the IOC signal
is reflected back by a Uniform Fiber Bragg Grating and the upstream signal is transmitted through it.
This design supports a data rate of 25 Giga bits/sec.

Keywords: bandwidth efficiency; inter optical network unit communication; self-phase modulation

1. Introduction

In recent years the passive optical network (PON) has become the most widely used
technology for fiber to home networks because of its low maintenance and cost efficiency [1].
In mobile fronthaul, for bandwidth efficiency the transmission of multiple mobile channels
over optical fronthaul link has become a highly desirable approach [2,3]. PON has also
become the best option for mobile backhaul and all optical virtual private networks [4,5].
Therefore, PON has wide range of applications. In a traditional PON the optical line termi-
nal (OLT) is connected to the ONU via the optical distribution network (ODN) and remote
node (RN). ONUs cannot communicate with each other directly but via OLT which results
in greater delay, losses, security hazards and unnecessary use of upstream and downstream
bandwidth. These effects can be minimized if ONUs can communicate with each other
directly, without involving the OLT, known as inter ONU communication (IOC). IOC has
also become important because of services such as peer to peer file sharing, interactive
gaming, and cloud computing among users in the same PON. If the PON is used for
mobile fronthaul then the propagation delay can be up to 200 micro seconds while the
allowed delay for 5G is 250 micro seconds [6], so to reduce latency IOC can be used for
mobile fronthaul. The same latency issues exist when PON is used for 5G mobile backhaul,
which can be resolved if inter base station communication is implemented using IOC [7].
Therefore, we can say that IOC can be used in many different scenarios. Many schemes
for IOC have been proposed in which IOC is achieved using broadcast and select mecha-
nisms [8,9]. Schemes have also been proposed which are secured but have complexity or
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greater latency [10]. IOC can be implemented using transceiver sharing [11,12], but this
effects the upstream and downstream communication. Numbers of transmitters can be
reduced by using tunable transmitters or other complex designs [13]. In short, simulta-
neous transmission has been proposed but with dedicated or tunable transmitters and
receivers [14,15]. Numbers of transmitters can also be reduced by using wavelength conver-
tors at ONUs. Wavelength conversion is mostly used in wavelength-division-multiplexed
networks for wavelength routing. Most popular methods of wavelength conversion are
self-phase modulation (SPM), cross gain modulation (XGM), cross phase modulation (XPM)
and four wave mixing (FWM). XGM, FWM and XPM mostly use semiconductor optical
amplifiers (SOA) for achieving wavelength conversion, which is a costly component and
requires dedicated laser pump. On the other hand SPM occurs due to the property of fiber
at a certain power level and length; if the parameters are correctly selected then wavelength
conversion at desired wavelength can be achieved.

We have demonstrated IOC using SPM at ONU for wavelength conversion. In case
of IOC signal transmission, the IOC signal is reflected back through uniform Fiber Bragg
Grating (FBG) and broadcasted to the neighboring ONU without affecting the normal
upstream and downstream communication; single identical transmitters have been used at
each ONU for simultaneous transmission of the IOC and upstream data from two different
ONUs, resulting in better bandwidth utilization

2. System Model for Simultaneous IOC and Upstream Communication

In our system model shown in Figure 1, two ONUs are considered for simultaneous
transmission of IOC and upstream data, having identical transmitters that can be connected
to either one of the available paths as shown in Figure 2—that is the IOC signal transmission
path or the upstream signal transmission path—based on the type of the data transmitted
by that ONU. The transmitter generates a return-to-zero (RZ) format optical Gaussian pulse
at 1310 nm with a bit rate of 25 Giga bits/sec and 1watt power. For upstream transmission
the generated signal passes through an attenuator before coupling at a remote node, and for
IOC signal transmission the generated pulse passes through a single mode fiber of a length
of 12 km, which results in SPM, generating peaks at two wavelengths as shown in Figure 3.
We filtered the 1310.6 nm wavelength by passing it through a bandpass Butterworth filter
with a 1 nm bandwidth. This signal is coupled with an upstream signal generated by
another ONU, at the remote node. The coupled signal is passed through FBG that reflects
back the IOC signal, which is at 1310.6 nm, and transmits the upstream signal, which is at
1310 nm.
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Every ONU has two dedicated receivers for IOC and downstream reception, re-
spectively. The reflected signal from FBG is passed through a bandpass filter centered
at 1310.6 nm with a bandwidth of 0.5 nm for further suppression of residual upstream
components. This signal is then passed through a 1:8 splitter for broadcasting to the
neighboring ONUs. The received IOC signal is converted into an electrical signal using
a photo-detector, lowpass filter (LPF) and 3R regenerator (Re-amplification, Re-shaping,
Re-timing regenerator) and analyzed with a bit error rate (BER) analyzer.

3. Results and Discussion

The performance of the proposed IOC system was evaluated on the complete two-way
IOC link for variable distances between ONUs and the remote node in the range of 2 to
5 km, with a differential end-to-end reach of 20 km. The main simulation parameters are
shown in Table 1:

Table 1. IOC link simulation parameters.

Simulation Parameter Value

Bit Rate 25 Gbps

US Wavelength 1310 nm

Fiber Bragg Grating Reflectivity 99%

Bandwidth of Fiber Bragg Grating 0.8 nm

Modulation RZ

The performance is gauged in terms of the BER, Q factor and Eye diagram as the
function of different distances between remote node and ONU, shown in Table 2 and
Figure 4. The results show that the BER increases with increasing distance which is
logical. However, the observed BER value for the maximum distance of 5 km is also in the
acceptable range, which should be less than 10−12 as per the ITU- T G.987.1 specification,
which shows satisfactory performance of the proposed system. Q factor is also one of the
parameters to gauge performance of any optical network as it indicates the optical signal-
to-noise ratio (OSNR) at the receiver. In PONs a Q factor of 7 or above is acceptable, in our
proposed system the minimum Q factor is 22.3, which is also higher than the minimum
acceptable range. The eye diagram is mostly used in optical communication to gauge
error-free transmission; the greater the eye opening, the greater the Q factor and the lesser
the BER will be. Eye pattern can also provide information about dispersion in the medium,
the more overlapping the samples the lesser the dispersion will be. Figure 4 shows the eye
diagram at different distances from the remote node, and it can be observed that the eye
opening is wide and samples are overlapping, hence the dispersion is less and the BER is
also very good.

Table 2. BER at different distances from the remote node.

Distance from Remote Node Min BER Q Factor

2 km 4.13 × 10−142 25.3

3 km 2.60 × 10−132 24.4

4 km 1.45 × 10−125 23.8

5 km 6.43 × 10−111 22.3
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4. Conclusions

The simultaneous transmission of upstream and IOC signals has been demonstrated
successfully. Two ONUs transmit the IOC and US signal at the same time, but at different
wavelengths, to the remote node where FBG reflects back the IOC signal at 1310.6 nm,
which passes through the bandpass filter before broadcasting to the neighboring ONUs
to suppress the residual US component. The eye diagram, BER and Q factor have been
observed at one of the neighboring ONUs as a function of different distances between the
ONU and remote node. A minimum Q factor of 22.3 is achieved at 5 km, which is higher
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than the acceptable range. Maximum BER is also observed at the same distance and is of
the order 10−111, which is much lower than the acceptable BER of 10−12 as per the ITU-T
G.987. 1 specification. Hence, it can be concluded that IOC can be achieved using single
transmitters and SPM without affecting upstream and downstream communication.
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