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Manganese chalcogenides are being actively studied both experimentally and theo-
retically because of the metal-to-insulator transition under pressure and possible catalytic,
optical and magnetic applications [1–3]. In particular, binary manganese sulfide MnS was
found in several crystal phases: α–γ-MnS. The α-MnS phase crystallizes in cubic structure
(Space Group Fm3m), and γ-MnS–in hexagonal structure (SG P63mc). It is known that
γ-MnS is metastable when heated to 200–300 ◦C; it becomes the α-MnS phase [1]. We
carried out our theoretical studies of this compound taking into account the antiferro-
magnetic ordering of the manganese ions at the ambient conditions and in compressed
unit cells. To study the electronic structure of MnS, our calculations were done in the
Quantum ESPRESSO software package [4] using the DFT + U method [5] for the Pedew-
Burke-Ernsenhof (PBE) form of the exchange–correlation function [6]. MnS is a wide-band
insulator in environmental conditions. In the course of the study, it was found out that in
order to reproduce a wide gap, strong electron correlations should be taken into account.
Thus, to obtain the experimental value of the band gap, the values of the Coulomb interac-
tion parameter U = 6.9 eV and the exchange interaction J = 0.86 eV were taken. It is also
worth noting that taking into account electron correlations affects the γ-MnS more strongly
and when the maximum parameter of the Coulomb interaction parameter U = 6.9 eV is
reached; the width of the electron gap of the γ-MnS reaches about 2 eV, while the α-MnS
has a band gap width of no more than 1 eV. For compressed volumes of the unit cell, it
was found that with increasing pressure on the unit cell, the band gap width decreases and
finally closes for the cell volume, which is about 50% of the ambient volume. Thus, the
closure of the energy gap and the increase in metallic states at the Fermi energy demonstrate
the experimentally observed transition from insulator to metal in MnS.
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