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Abstract: The Leaf Area Index (LAI) is an important algorithm for studying the health status of
vegetation. In this study, the impact of hydrocarbon micro-seepage on vegetation in Ugwueme was
investigated using the LAI image classification approach. Landsat TM 1996, ETM+ 2006, and OLI
2016 satellite images that were acquired from the United States Geological Survey (USGS) portal
were used to classify various LAI maps as low, moderate, and high classes. The spatial–temporal
analysis revealed that the low, moderate, and high LAI density classification changed, respectively,
from 41.24 km2 (50.43%), 33.98 km2 (41.54%), and 6.56 km2 (8.02%) in 1996 to 23.70 km2 (28.98%),
29.48 km2 (36.04%), and 28.60 km2 (34.97%) in 2006, and to 38.23 km2 (46.74%), 27.54 km2 (33.68%),
and 16.01 km2 (19.58%) in 2016. The stimulation analysis shows that by 2030 (the 14-year planning
period), the low, moderate, and high LAI density classifications will be 8.86 km2 (10.82%), 24.28 km2

(29.70%), and 48.63 km2 (59.46%), respectively. The study shows that LAI is an important algorithm
that can be effectively used to study the health status of vegetation in an ecosystem.

Keywords: forest ecosystem; Markov Chain Model; micro-seepage; remote sensing; LAI

1. Introduction

Hydrocarbon oil and gas located below the earth’s surface often accumulate in an
impermeable underground reservoir. These oils and gases leak under high pressure and
then outflow in a vertical or nearly vertical direction through weak geological structures,
such as faults, joints, and discontinuities, to areas of low pressure before emerging on the
earth’s surface as either macro- or micro-seepage [1,2]. Micro-seepages are invisible traces
of light hydrocarbons that are detectable only by geochemical means [3,4]. During the
vertical migration of oil and gas, oxidation–reduction reactions are established along mi-
gration paths, resulting in anomalies in surrounding sediments, soils, and vegetation [5,6].
Vegetation anomalies, mineralogical alterations, and the changes linked to electrical and
magnetic fields often occur on or near the earth’s surface [7,8]. Among these anomalies and
alterations, Shi et al. [9] reported that bleaching of red beds, enrichment of ferrous iron, clay
minerals, and carbonate alterations, as well as vegetation anomalies, often express diagnos-
tic spectral properties that can be studied with remote sensing technology [10]. Depending
on climate, soil type, vegetation species, and location, micro-seepage has been found to
have a tremendous impact on vegetation, yielding stress and eventually death [11,12].

Remote sensing (RS) is a fast, cheap, and non-destructive method that is used for
interpreting anomalous zones [13]. It demonstrates the ability to detect changes in the
spectral reflectance of vegetation [14]. Figure 1 depicts the spectral reflectance curve of
vegetation. When electromagnetic energy interacts with vegetation, it is reflected, absorbed,
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or transmitted, depending on its chemical constituents or leaf structures [15]. When vegeta-
tion is stressed, the NIR bands are absorbed by the dead cells rather than reflected [16]. In
the visible section, absorption is more pronounced at 0.45 µm and 0.66 µm. The absorp-
tions within the blue and red regions respond strongly to the absorption of chlorophyll
(chlorophyll-a and chlorophyll-b) bands. Healthy vegetation absorbs electromagnetic radia-
tion in its visible region (0.4–0.7 µm). Near the 0.7 µm, red/infrared boundary, absorption
decreases and reflection increases. From 0.7 to 1.3 µm, the reflectance is virtually constant
before diminishing as the wavelengths get longer [16].
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was used to generate the Region of Interest (AOI) before overlaying the shape-file of the 
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Leaf Area Index (LAI), an important technique in remote sensing [17]. It is one
of the robust vegetation indices that can be used to study the impact of hydrocarbon
seepage on vegetation. Wang et al. [18] highlight that LAI is a vegetation structural index,
defined as half the value of the overall green leaf area per its unit ground surface area.
LAI has a lot of advantages. Some of these include the fact that they are employed in
agricultural and ecological studies for a variety of objectives, such as yield evaluation,
stress determination, and primary productivity, which are connected to photosynthesis,
transpiration, respiration, and the carbon and nutrient cycles [19]. Thus, LAI is a crucial
input for a variety of agricultural, ecological, climatic, and hydrological models, including
models of canopy photosynthesis, crop growth, transpiration, precipitation, evaporation,
and primary production. An important drawback of LAI is that it cannot be used to
quantify stress on each plant species since different plants grow together as a community.
LAI relates to the Soil Adjusted Vegetation Index (SAVI), and their relationship is depicted
in equation 1 [19]. Due to the lack of soil, the SAVI minimizes the brightness reflection with
the Normalized Difference Vegetation Index (NDVI). The NDVI is an indicator that explains
the visible and near-infrared reflectance of vegetation that can be adopted to determine the
density of greenness within an area of land [20]. The SAVI is calculated with equation 2 [21].
The study aims to stimulate the impact of hydrocarbon micro-seepage on forest ecosystems
in Ugwueme from 1996 to 2030, based on the use of the Leaf Area Index algorithm and
Markov chain model. Researchers such as Breda [22], Johckheere et al. [23], Weiss et al. [24]
and Chen [25] had used experimental design, sample techniques, tools, and estimating
theories for ground-based LAI measurements to monitor plant health. These methods for
measuring LAI are often cumbersome and time-consuming. This study had used the time
series LAI algorithm and Markov chain model for mapping and for stimulation analysis.
Mapping and stimulating with RS tools is more rapid and has large coverage, as compared
to the ground-based methods.
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LAI = −In [(0.69 − SAVI)/0.59]/0.91 (1)

SAVI =
(NIR − Red)

NIR + Red + L
×(1 + L) (2)

where NIR is the reflectance in the near infrared band, and red is the Red band [15].

2. Materials and Methods
2.1. Materials

In this study, Landsat 5 TM, 7 ETM+, and 8 OLI for 1996, 2006, and 2016 were used
to model the LAI change dynamics. These Landsat images were all acquired through the
United States Geological Survey portal (http://earthexplorer.usgs.gov/) on 6 January 1996
for Landsat 5TM, 12 January 2006 for Landsat 7, and 4 January 2016 for Landsat 8 OLI. All
of the images were taken in the same season (dry season) and were cloud-free. They have a
spatial resolution of 30 m and were chosen due to their quality and availability (Table 1).

Table 1. Characteristics of the sensors used in the study.

Satellite Name Path/Row Sensor Type Cloud
Cover (%)

Year of
Acquisition UTM Zone Spatial Resolution

(Meters)

Landsat 5 188/055, 188/056 TM 0 1996 32 N 30 × 30

Landsat 7 188/055, 188/056 ETM+ 0 2006 32 N 30 × 30

Landsat 8 188/055, 188/056 OLI 0 2016 32 N 30 × 30

2.2. Methods
Image Pre-Processing and Classification

Pre-processing is very critical in change detection analysis, as inaccuracies ascribed to
image sensors, if not rectified, might result in erroneous results [26]. Pre-processing improves
the quality of the image by eliminating radiometric and geometric flaws. In the study, image
pre-processing, which included image gap-filling, sub-setting, enhancement, and radiometric
corrections, was performed with the ArcGIS 10.5 and ERDAS Imagine 10.5 software packages.
Zig-zag lines are present in all Landsat 7 ETM+ data acquired from the USGS after 31 May
2003. This error was the result of a failure in the ETM+ Scan Line Corrector. To rectify this line
error in the ETM+ data, which were used for this study, radiometric correction was applied
with the Landsat toolbox embedded in the ArcGIS 10.5 software. The World Geodetic System
(WGS) 1984 ellipsoid was used to register satellite data with the Universal Transverse Mercator
(UTM) zone 32N coordinate system. By integrating multiple satellite spectral bands in the
RGB format for all the images used (1996, 2006, and 2016), the layer stacking tool of the ERDAS
Imagine program was used to generate the Region of Interest (AOI) before overlaying the
shape-file of the research area (Ugwueme) and then sub-setting. Image classification in remote
sensing is classified as either supervised or unsupervised [7]. In this study, the supervised
classification with the maximum likelihood classifier (MLC) approach was utilized for the
classification process due to its ease of training [5]. In this process, clusters of images are
defined as a class, and a class often occupies a section in the feature space. The training areas
are created by digitizing each of the LAI classes, generated by band combinations, such as
class 1 (low LAI), class 2 (moderate LAI), and class 3 (high LAI). The trend K is calculated as
the degree of LAI class changes between the reference data (T2) and the initial data (T1) [27].
LAI classes that are reducing are shown with a negative sign (-), while those increasing are
represented with a positive sign (+).

2.3. Stimulation of Future LAI Dynamics
2.3.1. Markov Chain Model

The Markov chain model (MCM) is a conditional model that represents the likelihood
of a LAI type transiting from one mutually exclusive state (St) to another (St1) during a given

http://earthexplorer.usgs.gov/
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time period [28]. Future LAI changes are frequently stimulated based on the transition
probabilities of the previous or current LAI changes [29]. MCM often provides estimates
of the spatial distribution of LAI changes as well as predictions of their magnitude and
quantity. As shown in (3) and (4), the conditional probability equation defined by [30–32]
for stimulation analysis is given as:

S(t + 1) = Pij ∗ S(t) (3)

and

Pij =

 p11 . . . p1n
...

. . .
...

pm1 · · · pmn

(0 ≤ pij ≤ 1 and
n

∑
j=1

Pij = 1, i, j = 1, 2, · · · , n

)
(4)

where pij is the transition probability matrix, n is the number of LAI types, and i and j, as
well as St and St1, are the LAI statuses at time t and t1.

2.3.2. Cellular Automata Model

A cellular automata (CA) model is a discrete model for simulating complex activities
in space and time [33]. It is a spatial dynamic system based on a transition rule that
links the new state to the LAI type’s prior state. CA-based models can also depict non-
linear and complicated, geographically distributed processes, providing insights into
LAI change patterns at the local, national, regional, and global levels [34]. Cells, cell
size, cell neighborhood, transition rules, and time are some of the model’s important
components that must be taken into account for optimal stimulation results [35]. According
to Subedi et al. [27] and Singh et al. [28], the CA model is expressed as follows in (5):

S(t, t + 1) = ((St), N) (5)

where S is the set of states of the finite cells, N is the number of neighboring cells, t and t +
1 are different times, and f is the transformation rule of local space.

2.3.3. CA–Markov Model

The CA–Markov model is a model that combines the theories of Markov and CA for
future spatial–temporal analysis [22,36]. In remote sensing, the integrated CA–Markov
model has advantages due to its simple calibration, effective efficiency with data, and
capacity for complex patterns [37,38]. The CA–Markov model was applicable in this study
for stimulation analysis.

3. Results and Interpretation
3.1. Classification Analysis and Rate of Changes

Table 2 shows the LAI classification and rate of change analysis. From the spatial–
temporal analysis, we see that the category of moderate LAI classes decreased from
33.9750 km2 (41.54%) in 1996 to 29.4777 km2 (36.04%) in 2006 and to 27.5436 km2 (33.68%) in
2016. Throughout the study, the low and high LAI classes decreased and increased, respec-
tively, from 41.2443 km2 (50.43%) and 6.5610 km2 (8.02%) in 1996, to 23.7006 km2 (28.98%)
and 28.6020 km2 (34.97%) in 2006, and to 38.2266 km2 (46.74%) and 16.0101 km2 (19.58%)
in 2016. Between 1996 and 2006, the low and moderate LAI classes experienced negative
changes of −17.5437 km2 (−21.45%) and −4.4973 km2 (−5.5%), while the high LAI class
experienced positive changes of 22.041 km2 (26.95%). From 2006 to 2016, the low LAI class
accounted for a positive change of 14.526 km2 (17.76%), while the moderate and high LAI
classes recorded negative changes of −1.9341 km2 (−2.36%) and −12.5919 km2 (−15.39%),
respectively. The spatial–temporal analysis shows that vegetation changes are occurring
in the study area. These changes are depicted with differences in the LAI classification
maps and are the result of vegetation degradation due to the various degrees of impact
and spread of the hydrocarbon seepage over the study years. The spread of hydrocarbon
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seepage in the year 2016 was higher than in 2006 and 1996; hence, the vegetation was
more degraded in 2016 than in other study years. The higher the value of the vegetation
index, the higher the likelihood that a substantial amount of green vegetation will cover
the area. Lower LAI values indicate reduced or degraded vegetation. Figure 2 depicts LAI
classification maps for the 1996, 2006, and 2016 study years. The maps were categorized
into low, moderate, and high LAI classes. The yellow pixels depict areas of low LAI. The
red and blue pixels show regions of moderate and high LAI. Low LAI areas have a low
spread of hydrocarbon seepage, whereas moderate and high LAI areas have a moderate
and high spread of hydrocarbon seepage, respectively.

Table 2. The LAI density classification.

LAI Density
Classes

1996 LAI Classes 2006 LAI Classes 2016 LAI Classes Trend (1996–2006) Trend (2006–2016)

Area (km2) (%) Area (km2) (%) Area (km2) (%) Area (km2) Area (%) Area (km2) Area (%)

Low 41.2443 50.43 23.7006 28.98 38.2266 46.74 −17.5437 −21.45 14.5260 17.76

Moderate 33.9750 41.54 29.4777 36.04 27.5436 33.68 −4.4973 −5.5 −1.9341 −2.36

High 6.5610 8.02 28.6020 34.97 16.0101 19.58 22.0410 26.95 −12. 5919 −15.39
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3.2. The Spectral Reflectance of Vegetation

Figure 3 depicts the differences in the spectral reflectance of solar energy between
healthy and un-healthy (stressed) vegetation and within the visible and infrared sections
of the electromagnetic spectrum. Here, the reflectance values of vegetation are plotted
against the wavelength to show the degree of reflectance in the spectrum. Within the visible
section of the spectrum, we see in Figure 3 that, from 1996 to 2016, healthy vegetation
reflected more solar radiation than un-healthy (stressed) vegetation. However, the spectral
reflectance curve of unhealthy (stressed) vegetation is affected owing to the decrease in
efficiency of photosynthetic pigments, thereby yielding an increase in the reflectance values
within the visible section and a decrease in reflectance within the NIR section [39].
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infrared electromagnetic spectrums (1996–2016).

3.3. The Stimulation Analysis

Stimulation tools implemented in the IDRISI software are frequently used for predic-
tion analysis (Eastman 2009a, b). In this study, the stimulated year (2030) was anticipated
using the transition area matrix and transition probability matrix. The transition probability
matrix depicts the probability that a given LAI class will transit into another LAI class.
The transition area matrix depicts the total area displayed in cells or pixels (30 m × 30 m),
generated by multiplying each column in the transition probability matrix with cells of the
LAI in the preceding image. Table 3 is a matrix table that shows the stimulation analysis
(2016–2030). Considering Table 3, we see that the rows show older LAI class categories
while the column depicts newer class categories. Conditional probability maps, generated
with the Markov-chain model, indicate the likelihood of a given cell (pixel) being located in
a specific class in the future. Figure 4a–c show how they are used to graphically represent
the transition probability matrix. The final stimulated LAI maps are depicted in Figure 5.

Table 3. (a) Transition area matrix. (b) Cells that are expected to transition.

(a) Transition Probability Matrix (b) Cells That Are Expected to Transition

LAI
Categories

Probability of Changing to
Cells in

Expected to Transition to:

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Class 1 0.2329 0.3413 0.4258 Class 1 6133 8987 11214

Class 2 0.0643 0.2826 0.6531 Class 2 2106 9256 21391

Class 3 0.0502 0.2752 0.6746 Class 3 1595 8745 21440
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Table 3a displays the transition probability matrix table. The spatial–temporal analysis
shows that the likelihood of LAI class 1 changing to itself is 0.2329, shifting to LAI class 2
is 0.3413, and shifting to LAI class 3 is 0.4258. The probability of LAI class 2 shifting to
LAI class 1 is 0.0643, for itself it is 0.2826, and for LAI class 3 it is 0.6531. The likelihood
of LAI class 3 changing to LAI class 1 is 0.0502, to class 2 is 0.2752, and to itself is 0.6746.
Table 3b depicts the cells that are expected to transition to different LAI classes. Table 4
summarizes the final spatial–temporal stimulation for 2030. If we compare the analysis
in Table 2 with that in Table 3, we see that in the stimulated year (2030), the health status
of vegetation has rapidly declined. As vegetation becomes stressed and diminishes, it
therefore implies that by 2030, more carbon will be released into the atmosphere, hence
increasing climate change.
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Table 4. The spatial–temporal stimulation for 2030.

LAI Categories
(a) 2030 (14 Years Planning Period) (b) Trend (2016–2030)

Area (km2) Area (%) Area (km2) Area (%)

Low 8.8668 10.842 −29.3598 −35.90

Moderate 24.2883 29.699 −3.2553 −3.98

High 48.6252 59.458 32.6151 39.88

Total 81.7803 100

4. Conclusions

The study shows that remote sensing is an important technique for modeling and
stimulating hydrocarbon micro-seepage in anomalous zones. A useful algorithm in remote
sensing, known as the Leaf Area Index (LAI), has been adopted as a factor for studying
the health status of vegetation. Due to the varied spatial–temporal resolutions of space
satellite data, remote sensing techniques have the potential to quantify LAI fluctuations
at a diverse spatial–temporal scale. The study investigates and promotes the impact of
hydrocarbon micro-seepage on vegetation ecosystems in Ugwueme, Nigeria’s southern-
eastern region. To achieve this aim, three cloud-free Landsat images, from Landsat TM
1996, ETM+2006, and Landsat 8 OLI 2016, were acquired from the United States Geological
Survey (USGS) portal (http://earthexplorer.usgs.gov/, accessed on 4 January 2016) for the
creation of low, moderate, and high LAI classification maps. The results of the study show
that remote sensing technology can be effectively used to delineate areas of vegetation
anomalies and alterations.
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