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Abstract: This paper describes the modeling and control of a high-power wind energy conversion
system (WECS) using a variable speed doubly fed induction generator (DFIG) with the application
of an MPPT method to obtain the maximum power from the system. We applied metaheuristic
algorithms such as particle swarm optimization algorithms (PSO), Harris hawk optimization (HHO),
and salp swarm algorithm (SSA) to optimize the speed sensor. The simulation results indicated
that the MPPT method with the proposed optimized sensor could generate optimum rotor speed to
achieve maximum power output. The simulation was developed using Matlab/Simulink.

Keywords: WECS-DFIG system; control design; metaheuristic algorithms (PSO, HHO and SSA
algorithm)

1. Introduction

In recent decades, environmental pollution has been increasing, which is worrying,
and conventional energy resources are being consumed rapidly, so the world has been
turning to renewable energy resources (RES) [1,2]. RES can cover the entire energy needs
of the world. There are many renewable energy resources such as solar, hydroelectric,
biomass and wind energy, that have a positive impact [3]. Recently, there has been a
serious shortage of power generated by conventional resources, so wind power, with its
advantages of low cost and clean energy, is the best choice to meet society’s energy needs.
Multiple generators may be used with wind turbines, such as DFIG and permanent magnet
synchronous generators (PMSG). DFIG is preferred in this area because it has significant
advantages [4]. Variable speed wind turbine (VSWT)-based DFIG is superior to others,
in addition to its high performance, due to the light weight, low cost, and small capacity
of the converters [2–5]. To ensure high performance and achieve maximum performance,
it is necessary to use an MPPT method [5]. Several types of MPPT methods have been
applied to extract maximum power from WECS, such as maximum speed ratio (TSR), and
disturbance and observation (D&O). In this study, we are interested in speed servo control,
which consists of adjusting the electromagnetic torque of the generator in order to fix the
mechanical speed to a reference speed that allows maximum power to be obtained from
the turbine, based on the TSR technique extract.

2. Modeling of the WECS

The wind turbine absorbs the kinetic energy of the wind and converts it into torque,
which turns the rotor blades. Three factors determine the relationship between the wind
energy and the mechanical energy recovered by the rotor: the density of the air, the
surface area swept by the rotor, and the wind speed. Air density and wind speed are
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climatological parameters that depend on site-dependent climatological parameters [6].
The power coefficient Cp characterizes the aerodynamic efficiency of the system (Figure 1).
It depends on the characteristics of the turbine (blade dimensions, speed ratio and blade
tip angle). We used an empirically approximated expression for a wind turbine using the
DFIG-type generator defined as follows [7]:

Cp =

[
0.5176

(
116
λ′

)
− 0.4β− 5

]
exp
(
−21
λ′

)
+ 0.0068λ (1)

with:
λ′ =

1
λ + 0.08β

− 0.035
β3 + 1

(2)
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Figure 1. Power coefficient as a function of the speed ratio (λ) and stall angle (β).

In order to obtain the maximum power from the turbine (Figure 1), Cp and λ must
have the optimal value for λ = 8.1 and Cp = 0.48. The mechanical power of the wind
turbine and the aerodynamic torque is directly determined by:

Pt = 0.5Cp(λ, β)ρπR2V3 and Caer =
Pt

Ωt
(3)

The gearbox is the connection between the turbine and the generator. It is used to
match the highest speed of the generator to the slowest speed of the turbine. The figure
below clarifies the structure of the wind energy conversion system (see Figure 2), and it is
often modeled by the following two equations:

Ct =
Ωmec

G
and Cg =

Ωaer

G
(4)
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Modeling of the mechanical transmission can be represented as follows:

J
dΩg

dt
= Cmec = Cg − Cem − C f (5)
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The diagram block of the turbine of a horizontal axis variable speed wind turbine is
shown in the following figure (Figure 3):
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The MPPT of the Proposed Wind Energy System

The power absorbed by the wind turbine can be maximized by adjusting the coefficient
Cp. This coefficient depends on the speed of the generator. It possible to maximize this
output using a variable speed wind turbine. It is, therefore, necessary to develop control
strategies to maximize the generated electric power (thus, torque) by adjusting the speed of
the turbine to its reference value regardless of the wind speed reference value considered as
a disturbance variable [8]. The MPPT proposed in this work is the one with known airfoil
properties with a control of the speed (the Cp is the one previously defined). This control
structure consists of adjusting the torque appearing on the shaft of the Caer turbine in order
to fix its speed to a reference value. In order to achieve this, the use of speed control (PI
control) is absolutely necessary. The turbine speed reference is that which corresponds to
the optimum value of the speed ratio Cpmax (=0, constant), which allows the maximum
value of Cp to be obtained. Then we can write:

Ωre f =
λCpmaxV

R
(6)

The installation shown in the figure below (Figure 4) represents the implementation of
the MPPT with the wind turbine.
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3. DFIG Modeling

The DFIG is a machine that has excelled with its vector control. It is widely used in
the wind turbine industry for variable speed wind turbines for various reasons such as
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the reduction of stress on the mechanical parts, the reduction of noise, and the possibility
of controlling active and reactive power. The DFIG model in the d-q reference frame [7] is
given by: 

Vsd = Rsisd + d
dtϕsd −wsϕsq

Vsq = Rsisq +
d
dtϕsq −wsϕsd

Vrd = Rrird + d
dtϕrd − (ws −wr)ϕrq

Vrq = Rrirq +
d
dtϕrq − (ws −wr)ϕrd

Cem = 3
2 p Lm

Ls

(
ϕqsidr −ϕdsiqr

) (7)

4. Proposed Optimization Algorithm

Metaheuristics are optimization procedures that make it possible to obtain an approxi-
mate value of the optimal solution in a reasonable amount of time. The goal is to solve a set
of problems in different areas without having to change the basic principle of the algorithm
of the method. In our work, we propose three metaheuristic algorithms—particle swarm
optimization (PSO), Harris hawks optimization (HHO), and the salp swarm algorithm
(SSA)—to see which is best in relation to our system.

4.1. Particle Swarm Optimization (PSO)

PSO is an optimization algorithm based on an evolutionary computational technique.
The basic PSO was developed from swarming research such as fish flocking and bird
flocking. After first being introduced in 1995, a modified PSO was introduced in 1998 to
improve the performance of the original PSO. In PSO, social behavior is modeled by a
mathematical equation that allows the particles to be guided during their displacement
process [9–15]. The movement of a particle is influenced by three components: the inertial
component, the cognitive component, and the social component. Figure 5 shows a flowchart
of the method.
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4.2. Harris Hawks Optimization (HHO)

The cooperative hunting behavior of Harris hawks has inspired the HHO algorithm
and has been mathematically modeled [11–14]. This algorithm is a population-based algo-
rithm, which was inspired by nature and can be investigated under three main sections
of exploration, the transition from exploration to exploitation, along with actual exploita-
tion [14]. The flowchart of the HHO algorithm is shown in Figure 6. The exploration phase
of the algorithm mimics the searching behavior of the hawks for prey. This is also the first
stage of the algorithm. The mathematical model for this stage has a relation as given in
Equation (8) [15]:

x(τ + 1) =
{

xr(τ)− r1|xr(τ)− 2r2x(τ)| f ork ≥ 0.5(
xp(τ)− xm(τ)

)
− r3(LB + r4(uB − LB)) f ork < 0.5

(8)

where K, r1, r2, r3 and r4 are random numbers that have a range of [0, 1]. xp(τ) stands for
the prey’s position, whereas the current and the next positions of the hawk are shown by
x(τ) and x(τ + 1), respectively. The random numbers of r1, r2, r3 and r4 are updated in
each iteration. UB and LB are the search space’s upper and lower bounds, respectively.
xr(τ) and xm represent a randomly selected hawk in the available population and the
average position of the population of hawks, respectively.

Eng. Proc. 2023, 3, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 6. Flowchart of HHO. 

4.3. Salp Swarm Algorithm (SSA) 
SSA is one of the random population-based algorithms suggested by Mirjalili [12]. 

SSA simulates the swarming mechanism of salps when foraging in oceans. In heavy 
oceans, salps usually shape a swarm known as a salp chain. In the SSA algorithm, the 
leader is the salp at the front of the chain, and the remainder of salps are called followers. 
As with other swarm-based techniques, the position of the salps is defined in an s-
dimensional search space, where s is the number of variables in a given problem. 
Therefore, the position of all salps is stored in a two-dimensional matrix called z. It is also 
assumed that there is a food source called P in the search space as the swarm’s target. The 
mathematical model for SSA is given as follows: The leader salp can change position by 
using the next equation [12–14]: 𝑧 = 𝑃 + 𝑟 ((𝑈 − 𝑙 )𝑟 + 𝑙 )             𝑟 0𝑃 − 𝑟 ((𝑈 − 𝑙 )𝑟 + 𝑙 )             𝑟 0 (9)

where the meanings of all symbols are shown in Table 1. 𝑟 = 2𝑒 − 4𝑎𝐴  (10)

The coefficient r1 is the essential parameter in SSA because it provides a balance 
between exploration and exploitation capabilities. To change the position of the followers, 
the next equations are utilized [16]: 

Figure 6. Flowchart of HHO.

4.3. Salp Swarm Algorithm (SSA)

SSA is one of the random population-based algorithms suggested by Mirjalili [12].
SSA simulates the swarming mechanism of salps when foraging in oceans. In heavy oceans,
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salps usually shape a swarm known as a salp chain. In the SSA algorithm, the leader is the
salp at the front of the chain, and the remainder of salps are called followers. As with other
swarm-based techniques, the position of the salps is defined in an s-dimensional search
space, where s is the number of variables in a given problem. Therefore, the position of all
salps is stored in a two-dimensional matrix called z. It is also assumed that there is a food
source called P in the search space as the swarm’s target. The mathematical model for SSA
is given as follows: The leader salp can change position by using the next equation [12–14]:

z1
n =

{
Pn + r1((Un − ln)r2 + ln) r3 ≥ 0
Pn − r1((Un − ln)r2 + ln) r3 < 0

(9)

where the meanings of all symbols are shown in Table 1.

r1 = 2e−
(
−4a

A

)2
(10)

Table 1. The meanings of all symbols.

Symbols Meaning

z1
n leader position in nth dimension

Pn food source position in nth dimension

Un upper bound of nth dimension

ln lower bound of nth dimension

r1, r2, and r3 random variables uniformly produced in the interval of [0, 1]

a current iteration

A maximum number of iterations

zm
n position of mith follower salp in nth dimension

e time

v0 initial speed

The coefficient r1 is the essential parameter in SSA because it provides a balance
between exploration and exploitation capabilities. To change the position of the followers,
the next equations are utilized [16]:

zm
n =

1
2

ce2 + v0e (11)

The flowchart of this algorithm is given as follows in Figure 7:
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5. Results and Discussion

In the simulation, the analysis was carried out in Matlab/Simulink. We present the
results obtained for the dual-feed asynchronous generator (DFIG) with the application
of the metaheuristic algorithm to optimize the parameters of the speed controller that
provides the maximum power of the wind turbine; Figure 7 represents the block diagram
used for the controller with the implementation of the applied optimization algorithms
(Figure 8), which is widely used in the literature to evaluate the performance of PID
controller design [13–15]. Rather than evaluating these error criteria as the objective alone,
Zwe-Lee Gaing’s study showed that objective combinations of these error criteria, which
include eight factors, are a better way to form a common goal [15,16]. Many researchers
use the method presented there. Four indices are commonly used to represent system
performance: square integral error (ISE), absolute integral error (IAE), absolute temporal
integral error (ITAE), and square temporal integral error (ITSE). They are defined as follows:

IAE =
∫
|e(t)|dt

ITAE =
∫

t.|e(t)|dt
ISE =

∫
e(t)2dt

ITSE =
∫

t.
∣∣e(t)2

∣∣dt

(12)
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turbine control.

The table below (Table 2) presents the different parameters obtained through the
optimization, showing the best results for each algorithm after several tests.

Table 2. The different results obtained by optimization.

Algorithm ISE ITSE IAE ITAE Error
PSO-Kp 19.3738 1.5885 23.2340 0.0001
PSO-Ki 0.0001 28.5724 0.0001 17.9310

0.4733

HHO-Kp 50 50 37.0073 50
0.0023

HHO-Ki 34.9314 50 33.8005 30.0855
SSA-Kp 50 50 50 34.2211
SSA-Ki 29.9746 34.9321 3.1388 31.7244

0.0003

The colored values in the table are the best for minimum error for each algorithm used. The following figures
show the evolution of various system parameters as a function of time for an average wind speed of 12 m/s and
zero setting angle.

Table 2 presents the figures obtained by the most powerful algorithm, the SSA. We
note that the SSA algorithm provided the optimal power coefficient Cp = 0.49 with a stall
angle β = 0 (Figure 9) and a speed ratio λ = 8.1 as shown in Figure 10. Figure 11 shows the
speed curve plotted with the reference speed, showing a minimum error of 3 × 10−3 and
a stabilization time of 1.0274 × 105 s, where Figures 12 and 13 represent, respectively, the
active and reactive power stabilizing at 100 s.
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6. Conclusions

We proposed a full modeling of the VS-WECS in this paper. The system was based
on a 1.5 MW DFIG, and the modeling and simulation of the wind turbine conversion
chain were performed with a control architecture (MPPT) that maximized energy efficiency.
Therefore, we played, on the one hand, on the efficiency of the conversion chain, and on
the other hand, on the quality of the reactive power. To extract maximum power, we used a
PI speed controller optimized with metaheuristic algorithms (PSO, HHO and SSA). The
results obtained with the salp swarm approach (SSA) confirmed the effectiveness of our
approach (stability and minimization of the wind turbine speed error). In future work, we
will investigate the application of our approach to optimize a grid-connected wind farm.
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